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Abstract-Because material junctions are commonplace on structures whose radar cross section is

of interest, it is essential that their scattering properties be adequately characterized. The stan-

dard impedance boundary condition (SIBC) has been employed in the past along with function

theoretic techniques to develop simple scattering models of material junctions with thin and/or
high loss slabs. To extend these models to more general slabs, generalized impedance boundary

conditions (GIBCs) and generalized sheet transition conditions (GSTCs) have been proposed.
Unfortunately, the solutions obtained with these are usually non-unique in the form of unknown

constants, and although the constants have been resolved for a few special cases, previous efforts
were unable to determine them in the general case.

This report examines the problem of the plane wave diffraction by an arbitrary symmetric

two-dimensional junction, where Generalized Impedance Boundary Conditions (GIBCs) and Gen-

eralized Sheet Transition Conditions (GSTCs) are employed to simulate the slabs. In chapter 2,
GIBCs and GSTCs are constructed for multilayer planar slabs of arbitrary thickness and the

resulting GIBC/GSTC reflection coefficients are compared with exact counterparts to evaluate
the GIBCs/GSTCs. In chapter 3 the plane wave diffraction by a multilayer material slab recessed

in a perfectly conducting ground plane is formulated and solved via the Generalized Scattering
Matrix Formulation (GSMF) in conjunction with the dual integral equation approach. Various
scattering patterns are computed and validated with exact results where possible.

In chapter 4, the diffraction by a material discontinuity in a thick dielectric/ferrite slab is
considered by modelling the constituent slabs with GSTCs. A non-unique solution in terms of

unknown constants is obtained, and these constants are evaluated for the recessed slab geometry
of chapter 3 by comparison with the solution obtained therein. Several other simplified cases
are also presented and discussed. In chapter 5 an eigenfunction expansion method is introduced

to determine the unknown solution constants in the general case. This procedure is applied to
the solution of chapter 4, and scattering patterns are presented for various slab junctions and

compared with alternative results where possible. Chapter six presents a short summary of this
report and some recommendations for future work.
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CHAPTER I

INTRODUCTION

file use of non-metallic materials is now commonplace on airborne vehicles, and

frequel,tly two material slabs of different composition will abut each other to form

a juIxction. For example, thin radar-absorber material (RAM) strips of different ..

COlllposition are often joined end-to-end on a metal surface for radar' cross section

reduction. Also. ill microstrip antenna configurations a discontinuity in subst_'ate

composition is used to suppress unwanted surface waves and in man) cases a planar

array is terminated at a metal-dielectric junction. The electromagnetic effectiveness

of structures and devices such as RAM coatings or microstrip antennas is influenced

by the scattering behavior of any material junctions present. It is therefore important

to obtain a characterization of their behavior.

The scattering behavior of a material stab junction is revealed by an examination

of its plane wave diffraction, and this is the overall topic of the dissertation. For

discussion purposes, it is useful to divide these into non-penetrable and penetrable

slat) junctions. The scattering problem associated with non-penetrable junctions

was aided greatly by the introduction of standard impedance boundary conditions

iSIBCs) rL:_.3t,introduced to model thin metal backed coatings and layers of high

loss (see Figure 1.1). Conceptually, SIBCs are first order boundary condi_i,;lls i
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Figure 1.1" Structures modelled bv SIBCs.

which replace tile original material slab with an equivalent "sheet," on which the

tangential electric and magnetic fields are related through a simple proportionality

factor known as the "'impedance" of the sheet. Alternatively, the SIBC relates the

normal field components and their normal derivatives by the same proportionality

factor. The SIBC model thus eliminates the need to consider the field interior to the

slab, reducing a two-medium problem to a one-medium one.

Following this modeling scheme, grounded slab junctions and coated half-planes

are represented as discontinuous SIBC sheets, which readily permit the application of

function theoretic techniques such as the Weiner-Hopf method to obtain diffraction

solutions. These techniques yield a unique solution upon application of the standard

e,I_,, coll,:lition [49j, which dictates that the stored energy in the vicinity of the

1[he order of a boundary or transition condition refers to the order of the highest deriva_i_,,
present when the condition is cast in its normal derivative format



discontinuity must remainfinite. This twostepapproachin computing the diffraction

from slabjunctions hasbeensuccessfullyexploited by man}"researchers[341[[$] 117]

[2711:30].However.the approachis predicatedon the validity of the SIBC. which is

restricted to modeling very thin and/or lossycoatings. Y,Iore generalslab junctions

must therefore be characterizedby other methods.

\Vith regard to junctions formed by penetrableslabs,a closeanalogto the SIBC

sheet model is the "'resistive" and '_conductive"sheet simulation [12! 137]. T!;<;e

-.-beetsare characterizedby simple first order transition condition_ :,hich relate the

tangential fields acrossthe sheets. In particular, a resistive sheet (seeFigure 1.2).

supports anequivalentelectric current which producesa discontinuity in the tangen-

tial magnetic field acrossthe sheet. The proportionality factor relating the tangential

magnetic field discontinuity to the equivalentelectric current is denoted asthe "'re-

sistivity". Similarly, the conductivesheetmodel is the dual of the resistivesheetand

supports an equivalent magnetic current, with the resulting proportionality factor

denoted as the "conductivity" of the sheet. Like the SIBC models above, resis-

tive and conductive sheets models of slab half-planes and junctions are amenable

to Weiner-Hopf methods for the computation of diffraction solutions [1] [44], with

the same comments given above applying here also. We remark, however, that the

resistive and conductive sheet models are very restrictive (much more so than SIBC

models) and cannot be used unless the modeled slabs are very thin and of high per-

mittivity and/or permeability. Hence, as in the case of impenetrable slab junctions,

alternative methods are needed to model more general junctions.

One such exact approach was employed by Aoki and Uchida [3] to tackle the

problem of plane wave diffraction from a penetrable single-layer slab junction. Their

method involved rewriting the junction field components in terms of a Fourier se-
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Figure 1.2: Resistive/conductive sheet simulation of thin slab.



ries representation. This approach subsequently led to the generation of \\'eim_r-

Hopf equations expressed in terms of unknown spectral functions. However. o>.plicir

expressions for these functions could not be obtained, and tile resulting solution

involved a- cumbersome iterative procedure requiring knowledge of rather complex

integrals an,l functions.

Another possible approach to modeling thicker and more penetrable layered dis-

continuities is to replace the SIBC and resistive sheet transition conditions (STC

by generalized impedance bo',;ndarv conditions (GIBC)[1.5! [17] [23J and generalize,]

sheet transition conditions (GSTC) [.59J fagJ, respectively. The G[BC and (;STC are

equivalent one- and two-sided sheet representations which, unlike their SIBC and

STC counterparts, display second and possibly higher order derivatives of the field.

components on the equivalent sheet. These higher order derivatives are responsi-

ble for the increased accuracy of the GIBC/GSTC relative to the SIBC/STC. and

the effectiveness of the GIBC/GSTC is roughly proportional to their order. This.

of course, implies that an adequate GIBC/GSTC modeling of any layered material

is possible, provided that GIBC or GSTC of sufficient order are employed. Many

GIBCs and GSTCs have been derived to model all types of single and multiple layers

[.59] fa9J [4] [31] [43J. However, most of these GIBC/GSTC are either limited in order

(usually second) or else are only valid for specific geometries. This, of course, points

to the need for developing more general GIBC and GSTC capable of simulating a

wide variety of layered slabs and coatings.

Once a slab junction is represented as a discontinuous GIBC/GSTC sheet, then

function-theoretic techniques may again be applied to compute the plane wave diffrac-

tion, as in the SIBC/STC case. However, function theoretic solutions based on

the application of GIBC/GSTC simulations yield solutions which are non-unique



even after the application of the standard edgecondition [32] [41] [43] [.56]. Also.

reciprocity is not necessarih satisfied [14] [-t] [7], unless this condition is explic-

itlv enforced. Uniquenessis required of any physical solution, whereasreciprocity

with respect to the transmitter and receiver is necessarywhen the scattering body

is electrically passive. As noted in [41]. one may take advantageof this inherent

non-uniquenessto force a solution which is at least reciprocal, if not unique. The

non-uniquenessof tile solution is usually manifestedin terms of unknown constants

141]for finite-order GIBC/GSTC and unknownentire functions [32]for infinite-order

GIBC/GSTC..Most GIBC/GSTC diffraction solutions to date have been obtained

using second order GIBC/GSTC, and some of these have put forth arguments deal-

ing with the cancellation of non-physical poles to propose a unique solution [.54!

 43] [.3]. However. these previous efforts offer no method of determining the unknown

constants for more general GIBC/GSTC simulations.

If left unresolved, this issue would seriously impede the practical utilization of

GIBC/GSTC for a characterization of material junctions. In an attempt to resoh'e it,

the unknown constant appearing in a second order GIBC solution was recently related

to the field at the sheet discontinuity [42]. Unfortunately, the edge field is seldom

known apriori and this relation is not therefore of practical use. Nevertheless, it

demonstrated that a unique solution may be possible with a GIBC/GSTC simulation.

An example where it was possible to obtain a unique solution is given by Leppington

[21], who considered the surface wave reflection by an abrupt change in slab thickness.

The slab was modelled using second order transition conditions equivalent to those

given in [.59] and [a9]. Leppington was able to determine the reflection coefficient

uniquely in the limiting case of vanishing thickness by matching the interior field far

from the junction with a static representation of the interior field in the vicinity of



the junction. This suggeststhe possibiltiy of working with internal fields to resolve

tile uniquenessissue,an approachwhich to date has receivedlittle attention and is

e×ploired herein.

Th,_ goal of this dissertation is to develop a plane wave diffraction model for

generalsymmetric thick multilayer slabjunctions. Fourmain chaptersfollow dealing

with the derivation of the GIBC/GSTC, the formulation and formal solution of thc

planewavediffraction by certain GIBC/GSTC approximatedslab junctions, and _he

subsequentresolution and explanationof the non-uniquenessphenomenondescribed

above.

In chapter two, arbitrary order GIBC and GSTC are constructed for multilay-

ered planar slabs of arbitrary thickness. Initially, recurrence relations are derived.

for the fields in adjacent layers and are then employed to develop infinite order

1ooundary/transition conditions ttlat are conveniently expressed as a matrix product.

Approxhnations to the matrix element operators for low and high contrast materi-

als are subsequently employed to obtain finite order boundary/transition conditions.

Finally, numerical results are presented in which the exact reflection coefficients are

compared with those implied by the GIBC/GSTC to provide a measure of the con-

ditions' accuracy and utility.

In chapter three, the plane wave diffraction by a multilayer material slab recessed

in a perfectly conducting ground plane is formulated and solved via the Generalized

Scattering Matrix Formulation (GSMF) in conjunction with the dual integral equa-

tion approach. This problem is significant in that a unique GIBC solution is obtained

which can be used as a benchmark to test other GIBC/GSTC solutions. In the first

part of the chapter we summarize the GSMF procedure. The dual integral eq,la_i,m

method is then employed to formulate each of the subproblems and the nec,'--;*:v



solutions areobtained for both E: and H_. polarizations. These are given in terms of

symbolic split functions which are then evaluated for the specific case of a multilaver

grol_nded slab by casting the reflection coefficient in a form compatible with a GIBC

sirnulation of chapter two. A number of scattering patterns are presented and the

accuracy of the GIBC simulation is examined by comparison with, known results for

homogeneous slabs.

In chapter Ibm', the diffraction by a material discontinuity in a thick dieIec-

tric/ferrite slab is considered by modelling the slab as a distributed current sheet

obeying generalized sheet transition conditions (GSTC). In the first section of the

chapter, the GSTC representation of the distributed sheet discontinuity is used to

develop dual integral equations in terms of the unknown spectral functions propor- :

tional to the sheet currents. These equations are then solved in the standard manner

to yield expressions for the spectral functions in terms of unknown constants. The

constants are dependent on the geometry and properties of the discontinuity, and

are identified in this chapter for a few specific discontinuous layers whose diffraction

solution is available.

Chapter five deals specifically with the determination of the unknown constants

for the solution presented in chapter four. This is accomplished by introducing a gen-

eral eigenfunction expansion which is valid everywhere and subsequently recasting

the solution obtained in chapter four into this format. This field is then analytically

continued to the slab interior and continuity is applied at the material junction to

provide the remaining constraints for determining the unknown constants. Specif-

icalh a point matching scheme is proposed in which an overdetermined system of

equations is generated and solved for the constants using a least-squares techniq_z,_.

Various diffraction patterns are given validating the obtained solution for certain ,!i-
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electric half-planesand metal-dielectric junctions on aground plane. Finalh'curves

are given for various thick half-planes and junctions to illustrate their diffractiot_

b_'h_tvior_L_a function of' thickness.



CHAPTER II

DERIVATION OF GENERALIZED

TRANSITION/BOUNDARY CONDITIONS

FOP. I'LANAR MULTIPLE LAYER

STRUCTURES

A GIBC/GSTC diffraction coefficient can only be as good or as versatile as its

constituent GIBC/GSTC. Therefore, before diffraction coefficients of any generality

can be developed it is necessary to construct GIBC/GSTC which are valid across all

ranges of slab composition and thickness, and this is the task of this chapter. The two

configurations considered herein are the multilayered slab having symmetric or non-

symmetric material composition (about its center) and the multilayered coating on a

ground plane, as illustrated in Figures 2.1 and 2.2(a), respectively. The derivation

of the GIBC/GSTC is accomplished via the Taylor series expansion method, whose

versatility enables the treatment of non-planar as well as planar layers. In effect,

the resulting conditions allow the simulation of the multilayered configuration as an

opaque or transparent sheet (see Figures 2.2(b) and 2.3(b), respectively).

In proceeding with the development of the GIBC/GSTC, we initially derive re-

currence relations for the fields in adjacent layers. These are subsequently employed

to develop infinite order boundary/transition conditions that are conveniently ex-

I,ressed as a matrix product. Approximations to the matrix element operators for

l0
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Figure 2.1: Infinite multilayer slab.
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Figure 2.2: (a) Multilayer coating on ground plane. (b) Equivalent opaque sheet.
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Fig,lr_' '2.:3 (a) Zero thickness resistive and conductive sheet simitation of multilayer

Slab. (b) Distributed resistive and conductive sheet simulation of multi-

laver slab.
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low and high contrast materials then lead to finite order boundary conditions. Fi-

nally. , ' 'nt, merlca_ res_tlts are presented in which the exact reflection coefficients are

com-_ared with those implied by the GIBC/GSTC to provide a measure of the con-

,:litions' accuracy and ugiiitv.

2.1 Derivation of Infinite Order Conditions

Con-ider tile multiple laver slab with Nu upper layers (y > 0) and AL l,ower layers

(y < 0) as illustrated in Figure 2.1. The physical parameters corresponding to the

m _'_ upper laver are denoted by° e,,,_l,,.u u Kc,,_,_r,,, which _efer to the relative permittivity

and permeability, the index of refraction and the layer thickness, respectively. In

a similar manner, the physical parameters corresponding to the mes lower layer are

given t)5. e,_,/a,,,,_r_,e L .C rC,,. In the following we derive transition conditions to effectiveh"

replace their presence with a distributed current sheet. We begin this derivation by

first introducing a relation between the fields on the two sides of a single layer. This

is generalized to relate the fields of distant layers and those at the upper and lower

boundaries of the fictitious current sheet. For convenience, we may consider both

polarizations simultaneously by introducing the definitions

] E_, E_ polarization (H_ = 0)

[ H_, H_ polarization (E_ = 0)

e, E_ polarizationu = (2.1)
p, H_ polarization

Using a Taylor series expansion, the normal field components at the top and

bottom of the mts upper layer may be related as

_o (j/c,_)I
_,,-,,F_,J_,:_-p-+,-_,+...+i,fi_,/+= u,,, E gg_,F_,] , (:, .))

" t=0 (l)! _=_/++'_-, +(<) ....

£ (jkr_)Ld, F_ Iv= _,__, ÷( ?'_;--1 )+ = "t-_- 1 2.Jil
• " +'"+ rm - 1
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where

r ± =r___O + ('2._)

aild c_, is an operator defiiled as

jo
8_ - /e 8,a (2.5)

Clearly. (2.2) - (2.3) provide relations of the fields within a single layer and if we are

to derive a condition relating the fields at tile top and/or lower surface of the sial).

it is necessar,j to establish similar relations among the fields in different la,"__rs. As a

first step towards this goal we may proceed to express the right itand sides of (2.2)

, c' To do so.and (2.3) in terms of the fields above the boundary 5' = r_ + ... + r_.

it is instructive to resolve the right hand sides of (2.2) and (2.3) into a summation

of odd and even derivatives of F_. Subsequently, the wave equation may' be invoked :"

to rewrite the normal derivatives in tangential form, thus allowing the application of

the field continuitv conditions. We have

a_ = e_#_ - (5;, (2.6)

with

where

a_ = e_ + e_ (2.r)

j9
¢5a: --

k Ox

jo
(5z --

k Oz"
(2.s)

Invoking now the continuity of u,_F_ and 6I_F_ (including their tangential derivatives)

across the laver boundaries, (2.2) and (2.3) may be rewritten as

_1_=_#,+,#, _ )+= c)_,(,,_.'_ _ a,_)-_J _' _ (2.9)+...+(r__ 1 . . rn, rm, _=r 1 +r_ +...+(r_)+"
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In this.

-2 [ qll(u' _' T' 6t) Jq22(U, _C,r, C¢_)

2.10

(2.11

(2.12

Expressions relating the normal fields in adjacent lower layers may be obtained

in a similar maimer. \Ve have,

..... I.,=__ PJ ==-_,_- ...-(-al* ,

where now

: .

Equations (2.9) - (2.14) constitute fundamental recurrence relations for devel-

oping multilayer GIBC/GSTC. Each of the qll,q_2, etc. is an infinite-order linear

differential operator in even powers of 6t_. This is evident when the sin and cos terms

are cast in their Taylor series representation (note that the square root functions ap-

pearing in (2.12) do not have branch cuts). The finite-order boundary conditions are

then derived by truncating the Taylor series representation of qn, ql_, q2_, and q22.

Applying (2.9) and (2.13) recursively, we may establish a relation between the

fields at the top and bottom of the layer. We have

m:l .... NL ' '
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anal since F is continuous across 9 = 0. (2.15) - (2.10) imply the GSTC condition

_, r_, 8t _ _=-#-# ..... I,,._
i

; uU .U

nn.=l

(_.lT)

_' _g _u may now be replacedThe part of the slab occupying 9 c <TJ< ,_ +,2 +."+':¢v -

by tile ,lpper backgronnd medium (with its geometrical and material parameter_

de._oted by the subscript b and the superscript U) while the part of the siab occupying

tyL > .q > _:_C r_ -- rL is replaced bv the lower background material (with

geometrical and material parameters denoted by the subscript b and the superscript -.

L). Using a Taylor series expansion the boundary fields mav be related to the

equivalent fields at 9 = 9 r'' and 7j = yL. In so doing, we obtain

i

- U U U 2 _ g_, _ U

m=l

(2.18)

where

NL

# = Z # - (. ¢)
1=1

Nu

,_ = E ,#-(¢')
/=I

2.19)

Although compact, the transition conditions (2.18) provide little insight into the

ph)sics they represent. It is therefore instructive to reorganize them in a form that

leads to its physical interpretation. To this end we introduce the definitions

] /TM lI'I QL(_ gLm, Km, rmL L,_2)CU(£bL KbL, TbL 2,_t) def=
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in which

/6/-t def Haz. _ ___ H;,,_

4°2 ETj =e

H + def
= H;qj v:gY

(2.2.5)

\Ve also note that tile superscript notation e and h refer to Ev and Hv polarized

excitations, respectively.

In view of (2.24), the transition conditions given by (2.21) and (2..22) are now

readih" interpreted as a representation of "distributed" resistive and conductive sheets

occupying the volume 9 c' < y < Vc and supporting equivalent electric and magnetic

currents (see Figure 2.3a). 'These, of course, give rise to discontinuities in the fields

(and their tangential derivatives) at the upper and lower boundary of the sheets. The

equivalent electric and magnetic currents are denoted by d *'h and ;_[e,h, respectively,

and are defined in (2.24) above. Additionally, the subscripts d and 31 appearing

in (2.23) denote field discontinuities traditionally associated with the presence of

electric or magnetic currents, respectively. For convenience, the currents and result-

ing discontinuities AF are presented in terms of both normal and tangential fields.

When 9 c" = 0 + and yL = 0- (see Figure 2.3b), the distributed resistive and con-

ductive sheets are "compressed" onto an infinitely thin sheet occupying the plane

.q = 0. Such thin sheet representations are attractive for the application of transform

techniques in diffraction problems and are generalizations of the resistive-conductive
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sheet simulations given in [59], [39] and [31]. In contrast to the referenced sinm-

Iations. the oues given here exhibit coupled electric and magnetic currents, whose

presence complicates tile application of analytical techniques. This coupling is at-

tributable to the distributed nature of the polarization currents across the original

slab configuration. If, however, the multilayered slab is symmetric about y = 0 and

yu = __L then it can be shown that ,ll and J decouple. In particular, for this

:pecial case

£11 = L(_I

£12 = -tt12

£21 = -U21

Z322 = L62, (2.26)

leading to

e .^2

= "}

= ,}

= (2.27)

when substituted into (2.21) and (2.22). Evidently, the coupling of the current

components depends on the degree of asymmetry in the slab and an assessment on

the level of coupling can be obtained by comparing the magnitude of the operator

coefficients in £11 -_/11, ]"_12 "_ /_/12, £21 Jr" _/21 and £22 -/_(2.o relative to those in

£11 "}- _/11, £12 -- _12, 1321 -- L/'21 and 1322 "[- _/_22"

If a ground plane is inserted in the symmetric slab at Y = 0, the resulting structure

becomes opaque and its sheet simulation is further simplified. For the case where the
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ground plane is a perfect electric conductor (PEC), the electric currents are shorted

out and the second and third equations of (2.27) become the boundary conditions

corresponding to a coated PEC. Conversely, a perfect magnetic conductor (PMC)

shorts o_lt ti:e magnetic currents, leaving the first and fourth equations of (2.27) as

the corresponding sheet simulation. An alternative approach to deriving the GIBC

corresponding to coatings is to employ image theory in conjunction with t 2.27). The

field components in the equivalent image configuration of a PEC grounded slab a,'e

related as

E_(u>O) = &(u<O)

_,_E,_(,j> O) = -6;E_(u < O)

H_(u > O) = -H_(,j < O)

6_,H_(U > O) = 6_H_,(V < O) (2.2S)

and when these are subsequently introduced in (2.27) we obtain the boundary con-

ditions

U e 2 + e 2 +_m,(<){E_} +U_.4_,){_E_ } = 0

h 2 + (2.2,0)

corresponding to a slab on a PEC. Similarly, the image fields for a slab on a PMC

satisfy the relations

s_(y>o) = -E_(u<o)

6_E_(y > O) = 6;E_(_j< O)

H_(9 > O) = Hy(y < O)

_H_(u > O) = -c_Hy(u < O) i2.:Iii



,) q,

which Iead to

= o

U h 2 _ h 2

(2.31

when substituted in (2.27). Expressions (2.29) and (2.31) represent opaque conduc-

tive and resistive sheets, respectively, and are the dual of each other. \Ve note that

if .V u = 1, (2.29) re,:!cce to those given in [31].

To .s___:,:marize the above development, sheet simulations were derived that mo,!cl

_or replace the presence of) the multilayer slab and coating. Equations (2.21) through

(2.27) are referred to as generalized sheet transition conditions (GSTC) for the

transparent resistive/conductive sheet representation of the multilayered slab. On :.

the other hand. equations (2.29) and (2.31) are described as generalized impedance

bo,lndarv conditions (GIBC) f. "-the opaque sheet representation of the coated ground

plane. They are given in a compact matrix form and are valid for anv arbitrary finite

number of layers. Their versatility, however, is offset by the presence of infinite order

derivatives as implied by the definition of the operators, thus, limiting their applica-

bility to analytical and numerical treatments. It is therefore appropriate to consider

finite order approximations of the operators leading to conditions of practical use.

In the following we consider such approximations of the operators on the assumption

of low contrast (small _) and high contrast (large _c) layers or coatings.

2.2 Low and High Contrast Approximations for Matrix El-

ement Operators

Low contrast approximations to the matrix element operators may be derived

by replacing the trigonometric functions in (2.12) by their Taylor series expansions
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which are then truncated. To O(r w) these become

m # o (2.32)

where

al(,,, r, l, m) =

.2(,_, 7",l, m) =

a3(_,r,l,m) -

( - 1 )f+,_(m)!(ko_. )2,_:(,_-_)

(m- Z)!(1)!('2m)!

(_ t )z+_( m )!(kor )2_+l _:(_-tl

(m - l)!(l)'(')m.,, +i)[

(- 1)z+" (m)!(/%r) 2_- 1,_2t_- _>

(m - _)!(_)!(2,_ - t)!

It is a simple matter to demonstrate that the substitutions

(2.33

_ def

q - 2.3J,)

applied to (2.32) lead to a normal derivative representation of qn - q_2.

To obtain high contrast (large a) approximations for qii, it is necessary to utilize

the binomial expansion

(2.35)

._qubstituting this into (2.12) and again employing a Taylor series representation for

the trigonolnetric functions, we obtain to O(_: -M) the approximations
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w here

-E
;--1 U--m_z{1,_p-M}

^_, jtl
q121t_._,-.r.e_) _ --sin(kor_)

K

,3.[- 1 I _%klE
p=l Ll=ma_{1,2p_3I+l}

M-2 I ____2

;=i U=maz(1,2p-M+2}

u

._/+1 "': _.i

' t, :,=1 Ll=ma3:{1,.p-3.I_l}

-u = Lz=,_:{1,2v_M}

Tl(l, t_, TIT (I. O. p)

b2 2P--I t]

T2(I - 1; t_, T)T (l -- 1, 1.p)

N2p+2-/

r_(z - t, _, T)T (l, 0 p)]

21(/,_,:) =

/':Ill, _. r) =

T (/1, 12.] ) ) =

hi(p) =

b2(p) =

XI t d____]
.°

(_l)mt(l/21(kor)L [ cos (korx)

(l)! [ sin (korx)

(_l)m,(z/2)(kor), [ sin(korX)
(I)! - cos (/%_-,_)

; l is even /

J; l is odd

: I is even

; l is odd

E bl(il)bl(i2)'" b_(ih)b2(ih+_).., b2(i,_+z=)

(2p - 3)!!
2Pp!

(2p - 1)!!

2Vp!

X(X-2)(X-4)...(3)(1) ; (-1)!!d'dl

(2.36)

(.'2.37)

The sum defining the function T (&, 12,p) includes all product terms satisfying the

relation _ im = p. It should also be noted that l_ and 12 denote the number of bl

and b2, respectively, comprising the product terms. For example, if l_ = 2, 12 = 1

and p = 3 then T(2,1,3) = b_(1)b_(1)b2(1); if I_ = 2, 12 = 1 and p = 4 then

T(2.1.4) = bl(2)bl(1)b2(1)+ b_(1)b_(2)b2(1)+ b_(1)b_(1)b2(2) and if I1 = 2, l: = 0

and p = 4 _hen T(:2,0,4) = 6_(1)6t(3) + b1(2)6_(2) + bl(3)bt(1). (:orresi, onding
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lOrder

_ _)

_1
'1

,)

_3

'1.

Low contrast q¢, coefficients

,/tt= q22 = 1, qt2 = q2t = 0

']1l = (1"'_ = 1 '112 = jUtJCTt • q21 : "g'krl ( h;2 -- cq_)
-- " {z •

" -o

(11I = (122 = ]- -- (krl)_ /s'2 -- _t)' (112 = JUlkrl' q21 = _1c;-i (_c 2 -- d_)
'2

- 2 - _;), q12 = julkrl 1 - 6

(11 t

Table 2.1' Low coa.,:trast approximations to qo operators.

expressions in terms of normal derivatives can also be obtained bv employing (2.34)

in (2.:36).

Expressions (2.32) - (2.37) represent finite order approximations to the operators

qt1,qi2, q2_, and q_, and can be used to generate finite order GIBC or GSTC. To

do so for a specific muhilayered slab or coating, one first examines each constituent

laver and approximates the corresponding matrix elements by their low contrast

expressions (2.32) - (2.33) or high contrast expressions (2.36) - (2.37), as appropriate.

.ks an example, basic low contrast and high constrast approximations to the qij

operators are give in Tables 2.1 and 2.2. These finite order expressions are then

substituted into the matrices Qu and Or, given by (2.11) - (2.14). The resulting

expressions for the L/ and £ matrix operators are finite polynomials in even powers

of 8_. In passing, we note that the simulations presented here-in may also be extended

to model a longitudinally inhomogeneous slab once this is approximated as a layered

slab such as that shown in Figure '2.1.
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t

Order High constrast q,.y coefficients

_o

-1

h_

-3
h2

qll = q22 = COS (_k71), q12 = 0,q21 = 2-_ SiP r._'i_r_) -- _c (Kkrl)ul ' 2ui OS

'hi ct22 = cos (_krl) +sin _'_:rl) -y/-, q12=_2 _sin (_krl)

q21 = _sin(sk71) {1 - _ (_-O-J)_ei\ _cos (_:krl)ul 2"_2 8 '_ J -- 2ul

< 2_2

2<2 8<2 j

ul L 2< 8< 3 -- 48<3

qll = q2 o- ---- COS (Kkrl) 1 8_= J

2< 8<a _ j ,

ql.. = _-_ sin (_krl) {1 + a-k - _\< 2,_a 8,_a J

q21 = _ sin(,ckrl) {1 - _Ul 2,¢ 2 -- 8<2 --

--;'_ cos (gkrl) f _na'_ -- _ -- (_n)a_' }a: I 2,_ 8,_ a 48_a

jul krl ___ cos

AL+ I
8< _ 388_¢_ J;

Table 2.2: High constrast approximations to qu operators.
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¥

Figure 2.4: Coordinate system for reflection and transmission coet_cient derivation.

2.:1 Evaluation of the Boundary/Transition Conditions

To evaluate the accuracy of the derived boundary/transition conditions one ap-

proach is to compare the plane wave reflection and transmission coe_cients implied

by the finite order sheet simulation with the corresponding exact coe_cients.

Consider the plane wave

H'_ H_o

incident upon the sheet satisfying a given GIBC or GSTC (see Figure 2.4). Tile

generated reflected field can then be written as

H_ RHH_o

2.:_9
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an,_[ in the case of a GSTC, the transmitted field takes the form

= e;t_(xcos_'_i,3'+,_<,,_'+_.cosa'- - cos3'/ (2.40!
H _ 7HH_oY

To find the reflection coefficients RE:,H and corresponding transmission coefficients

I'_<H we substitute (9..38) - (2.40) into one of the boundary or transition conditions

given by (2.21). ('2.2:2), ('2.9.7), (2.:29) or (2.31). By carrying out the differentiations

in a straightforward manner we find

RE

TE

/;_H =

TH

{

:{

R_mc -R_e¢

1 e t •
Bp_ + _Rpm _

R_Im_

p.'c '_mc

1 Re 1 Re

Rp mc Rpec
h h.

Rpec --_rnc

1 h 1 h

/E_prnc -b "_/l_pe c

Rpho_

Rphm¢

h
Spmc-P_ec

1 h 1 h
iRpm _ - _Rp_¢

multilayer slab

multilayer symmetric slab

multilayer coating on PEC

muhilayer coating on PMC

multilayer stab

multilayer symmetric slab

multilayer slab

multilayer symmetric slab

multilayer coating on PEC

multilayer coating on PMC

multilayer slab

multilayer symmetric slab.

(2,4I)

(2.42)

(2.43)

(2.44)

In (2.41)- (2.44),

s,n [(4') cos=  os=
tb C_121 e32k,_]yu sin_

.[..,r7 le Og]g_ sin a gd_, [(_bu) 2 cos 2 a] + % _a2_ [(n__) 2 cos 2

/':_r siI' O_ _'4'_2 [(/%[!x'_ COS20_])* -- £bU21e--11 [(/gU)2b COS 2 C_] (sj2k,%u yu sin,a

[.k"xb , COS2 tbtZlll [(NU) 2c0S2

Ns sin a ?d52[( cos 2 cos 2
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_
pm¢

t?_

f_pmc

,_ sin a' Z2_2 [( _')2 cos _ c_]

g ;_ r h.L')2 Ct]

" C _ O]_-{_in_,:_}:[(_ )"co_-_
COS 2Ct .

_} sin _ U2__' .c,_. _]tit_b ) cos 2

o' o]
_c_' sin a _'/_2 [(_')2 cos _ a]

-- % £'1 L ,5 COS2 g.tk[,,:Lb_ L sino'+,%C'_ c'sinc,]

-U e 0_]+ % _fll [(';_)_ c°s2

-7 [_lb Mll

-_#_u2, [(,4') "_cos2o1

-- ].ZbL£_lhl [(,'.,,;5U) 2 COS 20_] gjk[,_f_CLsin:,+,_,,4C-sina ]

,LZb 't_21 k[_ L sin c,'+_ r-' sinai

(2.4.5)

an: from SneIi's law

_f sin a'= _/(_bC) '' --(_aC)_ cos 2 a. (2.46

To obtain a composite sheet simulation of a multilayer slab or coating, it _s

necessary to first model each layer individually through its Oc" matrix. The matrices

are subsequently' combined to yield the £ and/d operators of the composite boundary

condition. Thus, the accuracy of the overall simulation can be assessed by examining

that of the individual layers comprising the slab or coating. In the case of a single

laver simulation (with non-shifted surface) the £ and/d operators reduce to £n =

/2.,2 = 1, /2_ = £2_ = 0 and /d0 = qi3. This simplifies the analysis and in the

following we examine the accuracy of the proposed GSTC simulation as a function

of the condition's order. Only the E_-polarization incidence is discussed but similar

results apply to the H_-polarization case as well.

Figures 2.5, 2.6, 2.7 and 2.8 present the maximum error in t/i}_ - R,_,t_I over

real angles as the layer thickness is varied. The data in Figure 2.5 corresponds to

a low contrast simulation with e_ = 2 and _,_ = 1.2 as the order of the transition

condition increases from 2 to 9. In the region where IR_,: - R_,t_] is less than .1.5
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(to be considered as an acceptable error) each curve displays a quadratic shap_u

po<siI,lv with small "'kinks" or perturbations superimposed 1. tn general, tile range oi"

rll,_ sim_l_ation improves as the order increases, although in certain instances it may

ac_uahv de-teriorate slightly.

In Figure 2.6 the material parameters are increased to e, = 3.5 and /, = 2.

\Ve now observe that the maximum allowable thickness to maintain the same error

as in Figure 2.,5 is smalier when employing the same order transition condition. In

particular, the degradation is such that a 17 t_" order condition is required to eq_la!

the perfbrmance of the 10 t_ order condition in Figure 2.5. As before _h. maximtm_

allowable thickness or performance of the condition increases with the order.

To compare the performance of the low and high contrast approximations, tim.

curves in Figures 2.5 and 2.6 were recomputed using high contrast transition con-

ditions. The results are given in Figures 9.7 and 2.8 where the curves now follow

an oscillatory behavior unique to the high contrast conditions. In general, the high

contrast conditions provide an improved simulation for this choice of constitutive

parameters. For example, when the order of the condition is increased from 4 to 1'2,

the allowable thickness that can be accurately simulated increases 7-fold, significantly

better than the performance of the low contrast conditions. Most importantly, the

high contrast conditions allow the simulation of much thicker layers with the same

error criteria. A typical example are the 11 °' and 10 _'_ order simulations in Fig-

ure '2.6 and 2.7, respectively; whereas the low contrast simulation allows a maximum

thickness of only 0.28A, this increases to beyond 1._ when employing a high contrast

condition of comparable order. Inherent with their derivation, the high contrast

conditions are expected to provide improved simulations as the refractive index in-

IAs a reference, when tR_-R_e¢l = 1743, the corresponding phase error is 10° when iFe:_,t¢l=[R_,' = 1
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creases.This is indeedobservedin Figure 2.8 wherethe layer's relative constitutive

parameters ale e_ = 5 and tz_ = :3. As shown, a laver of up to 2J\ thick can be

accurately simulated with a 1'2 t_ order condition. Figures '2.5, 2.6, '2.7 and '2.8 are

:ccu_zputed for irI_ polarization in Figures 2.9, :2.10, 9..11 and 2.12. respectively. The

results are very similar to tile E_ polarization case. and the same remarks made

above are applicable here.

[,'sing the single layer data, suctJ as those presented in Figure 2..5-2.12. it is pos-

sible to synthesize __m,.::_llayer simulation. As an example, consider an E_ polarized

' U U .4plane wave incident ona three layer slab having e_ = 5-j0, #1 = 3-j0, r 1 =

for the first layer, % = 3.5 -j0, #=¢ ') -7"0, r} = .4 for the second layer and

e_' = '2 -j0, _ = 1.'2 -j0, r_ = .'2 for the last top layer (see Figure e_a>. To :.

select the individual layer models for E_ polarization we conjecture that the maxi-

mum error of IR,:: - R_,t_l for the composite sheet will be bounded by the sum of

the maximum errors of [/_: -/:/g,t_l of the constituent layers in isolation. Examining

Figures :2.5-2.8, we observe that the sum of the errors of the 6 th order high con-

trast representations of the bottom and middle layers and the 5 t_ order low contrast

representation of the top layer amounts to .062 as required by the design criteria.

This suggests that the composite sheet employing these representations will have an

acceptable performance when the total thickness is 1_\. The actual maximum error

of the designed simulation is compared with the sum of the isolated layer errors in

Figures _9.1a. The corresponding errors with a PEC and a PMC inserted at _ = 0

are also plotted in Figures '2,.14 and 2.15. "vVe note that the sum of the isolated layer

errors serves as a reasonable upper bound for the new simulation design.
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2.4 Concluding Remarks

This chapter hasdealt with the developmentof generalizedimpedanceboundary

and _ransiti_onconditions for multilayer coatingsand layers. A major effort wasalso

dcvot¢:dto presentthem in a form which is compactand convenientfor further usage.

Becauseof the generality of the derived conditions they are ideally suited for use in

the following c!'_,,_terswheregeneraldiffraction coefficientsaredeveloped.



CHAPTER III

DIFFRACTION BY A MULTILAYER SLAB

RECESSED IN A GROUND PLANE VIA

GENERALIZED IMPEDANCE BOUNDARY

CONDITIONS

Tile canonical geometry formed by two semi-infinite planar slabs joined end-to- :

end is a difficult one to model properly, particularly if the stabs are thick. For this

reason very few computed results exist to verify GIBC/GSTC diffraction solutions

obtained for thick slab junctions. This need is addressed herein by computing a

unique alternative GIBC/GSTC solution for a specialized thick slab geometry. This

solution provides a benchmark which can be used to partially verify more general

GIBC/GSTC diffraction solutions. The special problem considered in this chapter

is the plane wave diffraction by a multilayer slab recessed in a ground plane in

Figure 3.1, and the alternative method used is the generalized scattering matrix

formulation (GSMF) [25].

Related but simpler geometries have been studied in the past [2] [6] [20] [11] [26]

[sJ [48] [9j [52] [58t [28], and most of these solutions involved the interior and exterior

fields. This is alleviated herein by modeling the slab as a surface characterized by a

plane wave reflection coefficient R(cos ¢o) (see Figure 3.1), where ¢_o can be extended

thro_@l at_alx'tic continuation in tile complex plane. This enables us to carrx oT_lt

44
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(a)

re_eci ng su #ace, R(cos (Po)

Cb)

Figure 3.1: (a) Multilayer slab recessed in a PEC ground plane. (b) Representation

of slab as surface with reflection coefficient R.

tile analysis in a symbolic manner regardless of the inhomogeneity profile of the

layer. Hence, although our focus in this chapter is the multilayer recessed slab, the

derivations will be applicable to any vertically inhomogeneous slab.

The problem herein is formulated via the dual integral equation approach [10] in

conjunction with the GSMF. The GSMF is applied to the recessed stub structure

of Figure 3.2(a), depicting a perfectly conducting half plane elevated a distance

above a reflecting surface with a perfectly conducting stub recessed a distance d

away from the half plane edge. This formulation requires the solution to a number of

individual subproblems. As illustrated in Figure 3.2(b)-(f), they correspond to the

problems of direct diffraction, mode coupling, mode reflection, and mode radiation.
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Figure 3.2: Illustration of recessed stub geometry (a) and associated subproblems:

(b) direct diffraction, (c) mode coupling, (d) stub reflection, (e) mode

reflection at the waveguide mouth, (f) mode launching.
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Once solutions to each of timse subproblems have been obtained via tile dual integral

equation method, they" can be combined in accordance with the GSMF prescription

to yield the diffraction for the original structure in Figure a.l(a).

Unfortunately. the conversion of the symbolic solution into one of practical use

proves to be a formidable task when the reflection coefficient of the grounded slab is

obtained in its exact form. The fundamental difficulties are related to:

the factorization or splitting of the associated Weiner-Hopf functions into com-

ponents regular in the upper and lower half complex plane, and

• the extraction of the complex zeros (i.e., the waveguide modes) associated with

tile split functions.

The pertinent \Veiner-Hopf functions cannot be factored analytically' and one must

therefore resort to a numerical scheme (e.g., see [28]). Also, in solving for the complex

roots of the pertinent split functions, it is necessary to employ a search algorithm ii1

the complex plane, a process which is numerically intensive. We circumvent these

difficuhies by replacing the grounded slab by an opaque sheet satisfying a GIBC of the

form given in chapter two. Under a GIBC approximation, the approximate reflection

coefficient is cast as a ratio of polynomials in cos 6 or sin 6, making the determination

of the complex poles and zeros of the reflection coefficient a simple task. As a

result, the required Weiner-Hopf factorizations can be obtained analytically' leading

to computationaIly efficient solutions.

In the first part of the chapter the GSMF procedure is summarized. The dual

integral equation method is subsequently employed to formulate each of the sub-

problems and the necessary solutions are obtained for both E_. and H, polarizations.

These are given in terms of symbolic split functions which are then evaluated f,,t _1:,'
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specific caseof a multilaver groundedslab bv casting the reflection coefficient in a

fbrm compatible with a GIBC simulation of the sial) given in chapter two. II_._suhs

are given and the accuracy of the GIBC simulation is examined by comparison with

known results for homogeneous slabs.

3.1 Description of GSMF Procedure

In this section, the generalized scattering r_atr;x formulation (GSMF) is applie,1

to the geometry given in Figurc :_ '?(a). This consists of a perfectly conducting half-

plane located a di:.;t.? c.e dr ab_-,e the grounded slab, with a perfectly conducting stub

recessed a distance d away from the half-plane edge. To concurrently treat both the

E: and H. polarizations of incidence, the quantities F: and F_ are introduced. They.

are defined as

E,, E, polarization,F. = (3.1)
ZoH,, H, polarization.

{ ZoH_, E, polarization,F_ = (:3.2)
E_, H: polarization.

and from Maxwell's equations

jr1 c.3F,

F,, = k Oy (3.3)

where

-1, E, polarization,vl = (3.4)
1, H. polarization.

The individual problems to be considered in the GSMF prescription [25] are as

follows:

.. Evaluation of the direct diffracted field by the substructure in Figure 3.2(b)

due to a plane wave incidence. This field can be expressed as

F_ (¢, [_ P_d (cos c_,cos Oo;_) e-J_°'_°_(°-_lda _-,0o)
.,'C"



49

where P4_ is the spectrum associated with the currents induced on the half

plane and ip, o) are the usual cylindrical coordinates of the observation point.

Additionally. C is the complex contour composed of the directed iine segments

713- j >,:. 0 - j0], [0 - j0, rr,- j0], [r:, - jO, = + j_c] in the complex a plane.

'2. Evaluation of the field coupled into the waveguide due to a plane wave incidence

(Figure as illustrated. We denote the field corresponding to the n t_

coupled mode as

F_,_ (oo) = (--'_(cos Oo; f) e -jk"z :1.6)

where C,_ (cos 00;,8) is usually referred to as the coupling coefficient and /,',_ is

the propagation constant associated with the n th mode.

3. Evaluation of the modal field reflected at the stub (Figure 3.2(d)). This can

be expressed as F,,,_e °v'"_ where F,_ is the stub reflection coefficient of the t_t_

mode to the m t_ mode.

. Evaluation of the reflected field at the waveguide mouth due to the n th mode

(Figure 3.2(e). This can be expressed by R_,, (5)e -ak'_ where /i_m,_ (5) is the

reflection coefficient of the n th mode to the mth mode.

.5. Evaluation of the radiated field attributed to the rn t_ mode incident at the

waveguide mouth (Figure 3.2(f). This field can be expressed as

f_m (0) = _ Pm (cosa;5)e -'ik°o_°'(_'-¢)da (3.7)

where Pm (cosa, 5) is proportional to the spectrum of the currents induced on

the half plane due to the incident mta mode.
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Accordingly, tile scattered field by the recessed stub geometry in Figure 3.2(a) is

giveL_ by (for _t > _)

/c [Pdd (cos a, cos Oo; _5)+P,_od <cos a, cos Oo: 5. d)] e -ako_ co, (o-_)da
F.' (o, d)Oo,

(:3. $ )

where P,_od (cos a, cos 0o; _5,d) is associated with the presence of the stub and includes

the contribution of the waveguide modal fields. It can be written in a matrix form

as __o_

P,_o_ (cos a. cos O_: _, d) =

[P_ (cos_; _)Ir {[I]- [u,_ (d)][r_q[W_ (d)][_. (_)]}-_

•[_v_ (d)JEr_4[_. (d)][c_ (cos0o;_)i !:3..9)..

in which the brackets signify column or square matrices depending on whether one

or two subscripts appear, respectively. In addition, [I] denotes the identity matrix

and [II',_,_ (d)] is the modal propagation matrix whose elements are given by

_. (d) = (3.1o)
O, m#n.

To obtain the field scattered by the recessed material slab it is only required to set d

and i to 0 in (3.8) and (3.9). In this case, [Win,, (d = 0)] becomes the identity matrix

and [F_,_] reduces to [I] or -[I] for H, and E, polarizations, respectively. Thus,

P,_od becomes

Prnod (cos o_, cos 0o) de_____/P._od (cos a, cos 60; 5 = O, d = O)

[P_ (cos o,)] {[I1- ,.,, [R,-,,,,] }-' Iv, C,, (cos _,o)] (3.11)

where

P,_ (cos _) '_'J p,,, (cos _; 6 = o)
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C_ (cos oo) _J C_ (cos 0o; _ = O)

(3.121

Hence. the field scattered by the vertically inhomogeneous recessed slat) can l)e ex-

pressccI as

(o, Oo) = [ P_ (cos or, cos Oo) e-Jk°vc°_(_-O)da " y > 0 (:3.13)F_
JC

wtlere

Pr, (cosa.cos Oo) = P_j(cosa, cosc)o) + Pmo.t(c'-'sa.cOSOo). (:3.14't

Tile steepest descent method can then be employed to evaluate (3.i3) and obtain

the diffracted field.

3.2 Plane _Vave Diffraction and Mode Coupling

Consider the plane wave

F_ = e jk°(zc°s¢°+ysine°) (3.15)

F; = t, 1 sin ooe jk°(a:c°s®°+ysin¢'°) (3.16)

incident at an angle 0o upon the structure depicted in Figure 3.2(b). In the absence

of the perfectly conducting half-plane, the total fields may be written as (for 9 > 0)

F_TM = F: + F: (3.17)

FT' = g + F7 (3.1S)

with

F: = R(cos Oo) e"_k°(':_°_°-_'_¢°) (3.I9)

F_ = -ulR (cos 0o) sinOoe ak°(_c°s_°-_si_°°) (3.'211)
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where R (cos 0._) denotes the plane wave reflection coefficient of the grounded sial)

referred to 9 = 0. For the general case of a plane wave incident at an angle a on a

vertically inhomogeneous ground plane coating, R(,\ = cos c_) may be represented as

R(A)= "4('\)- v_I-A2B('\I]- A(A) + V'_-A2B(A " (3.21)

where A (,\) and B (,\) are even functions of ,\, with any branch cuts in A (.\) also

appearing in /3' (,\) and vice versa.

'The introduction of the perfectly conducting half plane at !/ = 6 gencre.': :_ an

additional scattered field component F:" so that the total fields become

£ = F__ + F; (.3.'_"2>

£_ = C"+U (a.'_,3)

This scattered field is due to induced currents on the perfectly conducting half-plane.

and can thus be represented by an angular spectrum of plane waves. A suitable

representation is [10]

fc P (cos o_) eJk°a_in %-akopC°_ (®-_)da
F: = fc C2(cos _) _-_ko6_._ [_-jko_O.(_+_/

+ n (cos(,,-- _)) _-,ko,,_o,(_-o)]

implying

9>,5,

da O<y<5,

(.324)

- fc vl sin o_P (cos a) eJ_:os_i_°'e-3_oP_°_(c)-_')da
F; = fcv, sin_Q(cosa) e-Jko 's'in_ [e-Jkop¢o*(¢'+_,)

--R (COS (rr -- a))e-Jk°°c°s(¢-a)] de

9>5,

0<y<5,

(.3.2.5)

in wlfich P (cos a) and Q (cos a) are the unknown spectral functions to be determined

from the boundary conditions at _ = O. These are
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(BI> Continuity of the tangential electric fields at _ = & -_ < ,r <

(B2) Continuity of the tangential magnetic fields at y = & z < 0

(B3'i \anishing tangential electric field on the perfectly conducting half-

plane at 9 = & x > 0

and we note that the boundary condition at the slab surface is implicitly taken into

account bv the representation (3.24) and (3.25).

The application of (B1)-(B3) in conjunction with (3.24) and (3.25) is st:'aigi_:-

forward. It results in the set of equations

SO (,\) = x6- J koX,\d,\ 0 m < O,

0,0

-c3(Ao) V/_-A2eJk°s_ 1-t,,R(Ao) e

where we have set ,\ = cos a, ,\o = cos 0o and

1, E: polarization, (3.29)v2 ()_) = 1/v'_- A2, H_ polarization.

"i-,_ _- E_ polarization,
= ' (3.30)

l, H_ polarization.

These are sumcient to obtain a solution for Q (,_) and P (,_). However, before pro-

ceeding, it is necessary to rewrite certain terms in the integrands of (3.27) and (3.28)

as products of "upper" and "lower" functions, that is, functions free of poles, zeros,

and branch cuts in the upper and lower half ,_ planes, respectively. In the process of

doing so, we introduce the definitions
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in which

_'3(,\) dj _,+(,\) _'J (,\)

1 - clR(.\) c-2_°_ _'/1-_-_ _J L,.(.\:_)L',_(.\;_)
L,(A) _; (.\)

-'!r-V/i--/\2.B (,,\)(1 --['1 e-23k°_)

L, (,\) L; (,\) = A (,\) + ,A-A-_B (,\).

In these. L, (A), /;,,, (,\; _), t'7 (,\), t,3 (,\) are lower functions while U, (,\) ,U_ (,\; _),

u-., (,\). cr_ (,\) denote upper functions. We also note that L_.U_ is a function charac-

teristic to the loaded parallel plate waveguide and its zeros correspond to modes in

the waveguide. On the other hand, L,U, is a function characteristic to the grounded

slab with its zeros corresponding to the surface wave modes supported by the slab.

Substituting (3.31)-(3.35) into (3.27) and (3.28), we have

Q(,\)v +(,\)v_(A)e-jk°_adA=O ; x <0, (3.36)
OG

f_'_ Q(,\)_,? (A)v; (,\) r_(_;6)U_(A;6)._-Jko._dA=
,_ L, (A) U, (A)

u, (ao) ; x > 0(3.37)

These coupled dual integral equations can be solved for the unknown spectra by

examining the analytic properties of the integrands, and the reader is referred to [10]

and [.5S] for a more explicit description of this process. From (3.36) and (3.37) the

unknown spectra are determined to be

Q (,\) =

P (,\) =

2_;u_ (A;_)L,(Ao) [ v_ (,\)._+(A)(A+ Ao)J
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Recognizing _hat P,_a(A) = P(A), we may then set <5 = 0 and substitute for tile

pularization ,h'pendent functions to obtain

L,_,(,\)L,_(,\o) ,/T g2 v'T - .\ _
P2_(,\) = (3.40)

2:rjt, (A)L, (Ao) (,\ ± ,\o)

L ,_(,\) L ,_(,\o) Iv'T--+_Av/T-t- .\o (:3.41)
P)d('\ ) = 2:rj L, (,\ ) L, (,\o) (,\ +,\o)

where the superscripts e and h refer to the spectra associated with E. and H: po-

larizations, respectively.

To soh'e for the field coupled into the regi,_.. 0 </1 < 6, :c > 0, (3.21), (3.3:}) and

(3.38) are substituted into (3.24) to obtain the integral expression

F:
= ./-_,2=jcf(,\)uf(,\)(A+-_Co) L,(Ao) L,(,\)U,_(A;6)

• 2j.4(/) 'v/__,_ +2B(A)cos(kog_ e-:k'"dA(3.42)

for 0 < 9 < 8. This can be evaluated by closing the path of integration via a senti-

infinite contour in the lower half ,\ plane. The sum of the residues of the captured

poles then yields

{F;= Zc_(,\o) i,4
n=l

(An)
sin (kot/__$-'\_ +B(A,.,)cos(kog_)}e_,_,o_:,,,"

(3.43)

where {,\_} are the zeros of U_ (A;6),

c_(,\o) = -o _,_o_'v'_-_'_-'d_-_- s,_(_o;_) ,,+(,_o),,;(,_o)_-_,_
- L, (,\,,)L, (Ao)U'_ (A,_; 5)u_- (A,_) v{ (,\,,) (,\,_ + Ao)'

(3.44)

aII£[

dA (3.4.5)

Substituting (3.29) and (3.30) into (3.44) with 5 = 0, we obtain the more explicit



forms for C_(,\o) as
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c_ (,_o) = 2L,_,(.\o)
Z_ (.\_) L_ (.\o) Q. (.\_)

c_ (Ao) - 2z,,, (.\,:,)
z, (A_) z,(Ao)_;,J,,..(.',,.,)

for E. and H: l)olarizations, respectively.

.\o + .\,,

.\o + ,\,,

(3.4C,)

(3.47

3.3
Reflection and Launching of a Waveguide Mode

Consider ,ow then n th waveguide mode field (for 0 < y < 5)

" ",. v/l_g +B

incident at the waveg,lide opening

/(,\,,) cos koVv,1 _ )'a ej_°_:A"

(:3.48)

Figure 3.2(e)). The radiated fields due to this

excitation may be again represented by (3.24) - (3.25). Subsequent application of

the boundary conditions (B1)-(B3) then yields the dual integral equations (with the

usual transformation to tile .\ plane)

where

_ ¢ (.\)G (.\) ,:;- (.',) _z,,,(A; ,5)c,%(A; ,s)
L, (A) U, (A) e-:k°':'_dA = 0 ; x > 0 (3.49)

/5-_ O (A)v + (,\) t.,_-(A) e-3_o_:.XdA = __ -v4 ejk°xA'_

'2 (ko 777 - ; <0,

v4 = { A(A,,) , E, polarization
B(A,_) , H, polarization. (3.51)

The solution of those proceeds in a manner parallel to the previous case. The result-

ing spectra are determined to be

o (.\) =

P (.\) =

--.-8.3.52)4_jcos(_"o__2 (A;_)q (,\)v; (.x,.,.),,_(,,,)(.\+ ,,_)
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with L_.. L,, v +, etc. as defined in (3.34), (3.35) and (3.31), (3.32).

_ ' oq , , =Sul)stituti:_g (3.4). (3..,:). (:3.30) (3.51) and (:3.3::I) into (:3.53) and setting F 0

we have

R7 ,_)
-A(,\,_)] L,_(,\)L,_(_\_) _Z_v_- ),,_

L_(,x) L_(,_.) lx/F-gXv_ + A_
= B (.\,)

4rrjL, [,\) L, (A,_) A + A,_

3.54)

:3..5.5)

correspondieg to the spectra for the E= and H, polarizations, respectively. Tile

modal field reflected back into the guide may be computed by substituting ([3.52),

(3.2t) and (:3.3:3) into (3.2-1) and employing the usual transformation to the ,\ plane

to obtain (for 0 < y < _<)

-._ 4r, jcos (kod_V_-(,\)u_.-(,\,_)u+(,\)(,X+ ,k,_)

L,_, (,\,_; 8) e -J_°_vq-_

L, (,\ ) L, (,k,_) U_, (,\. 8 )

. 2jA(A) + 2B(,_)cos(koy lX/-£ZT-_2) e-Jk°_d,_3.56)

As in the case of coupling, this integral can again be evaluated by closing the path

of integration in (3.56) via a semi-infinite contour in the lower half A plane to obtain

(3.57)

where R,_,_ are the mode reflection coefficients given by

t'4t'a" ('\n) e -jk°s_

cos(koe fT-; q (a.)q + ,X,_)

& (_m)L, (A_)u- (A_; ,_)
(3.5s)

\Vhen 8 is set to zero, this reduces to

"_" v'/]-- .\i L, (.\m) L, (,_) U" (:_m) ,kin + ,X,_
(3.-_'1 ,
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RL,, = B(A,,) Z,,,(A,,) v'T+ ,x,_ + A,_
Z, (.\_) L, (A,,)d'. (.\_) ,\,_+ ,\,,

for the _F. and H. polarizations, respectively.

(:3.60)

3.4 Computation of Spectra for Material Insert in a Per-

fectly Conducting Ground Plane

\Ve now have all the necessary components required for constructing the spectra

Pr_ associated with e multilayer slab recessed in a ground plane as defined in

I:_.I i:_ .'__,bstituting (3.40), (3.46), (3.54), (3.59) and (3.11) into (3.14) we obtain the

E: polarization result

L,_(.\I L_.(A_) v'T-Z-_ zj-7_C-Ao[1P:; (\' "\') = "2_,j Z, (,\) L, (,\o) .._+ ,\o

where

+ C Z ,.,o,,_,_,\+i
rn=l n=l

(3.61)

For H, polarization, the spectra may be obtained by substituting (3.41), (:3.47),

(3.55), (3.60) and (3.11)into (3.14) to find

- L_,(,_) L_,(_,o) _,,/i-7-i1_-$-_o[1P_"('\"\°)= _7;-(;i-£ 7o) ,_+ _o

where

v2,, ,\ +,\o
+ ZZ_o+,_ ,\+

r_=l n=l

(3.64)

_,.,,,= {[I]- [n,-,,,,]}7,,',,. (a.G6)

Expressions (3.61) and (3.64) can now be substituted into (3.13) and the resulting

integral can be evaluated by the method of steepest descents to vietd the far .'( :,.

:}.62)

(:3.63)
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non-uniform diffracted field

F s (cos O, cos ©o) "" _, e: /4p_s (

V

e-Jk°P

cos o, cos oo) --, 3.(;7!
v_

where (p. o) denote the usual cylindrical coordinates. In (3.67), F s and Pr, refer

to bT_ and Pr_ in the case of E, incidence and to ZoH_, P_, for H: polarization.

Although not apparent, (3.67) is reciprocal with respect to cos0 and cos oo. as it

should. We also note that P,.s (,\, ,\,;! is a combination of an inhomogeneous solution

(direct diffracted termi anti a sum of homogeneous solutions (modal contribution).

It may also be easily shown from the asymptotic behavior of (3.61) and (3.64) that

the homogeneous terms do not affect the edge condition.

3.5 Specialization to the GIBe Representation

To obtain numerical results, we must first provide expressions for the multilayered

grounded slab reflection coeflqcient (i.e. A (,\) and B (A)), as well as the associated

split functions and corresponding complex roots (waveguide modes). To accomplish

these tasks in a simple manner, we consider the general GIBC approximation to

R(A). This amounts to setting

NA

A(_) = E Ao(_- _)_
n=0

NB

B(_) = E B_(_- _)_, (a6s)
rt----0

where A,_ and B,_ are constants specific to the multilayered slab and are given in

chapter two. Introducing (3.68) into (3.21) yields

N,, ,V)= NB- E_=o B,_ -[E_=oA_(1 - v/_-A 2 (i )_2)_]

- _v_ _ A2)= ---v.,v_ B_(1 _)_JR(.\) = LE_o._(_ +_-.v_,=o -
(:3.69)
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and note that for a given order of approximation. NA and Ns are finite and in general

•VA = .VB or AA = .Vs + 1, with the order of the condition equal to

Ns = m a x (2 NA, 2 Ns + 1 ). (3.7o)

To evaluate the split functions L_ (A; (5) and U_, (A; 8), (3.68) is substituted into

(3.34) and by setting 5 = 0 we obtain

- _,_ ---c ,-__i - ,\2

A2) _ E, polarization

Hz polarization.
(3.71

The split functions ,!_x'eallen trivially obtained as

U¢. (.\) L,,,(-.\)
)

[ :v. _ _,\]

E_ polarization

H_ polarization,

(:.1.72

where Imv/T - _ < 0 and {4_} are the NA zeros of z..,,=0,0( for E. polarization

or _v'xa,,=o,4,_" for H.. polarization. It is apparent from (3.44) and (3.72) that the

pertinent waveguide mode propagation constants are given by k0v_ - _,_.

In a similar fashion, we may substitute (3.68) into (3.35) to obtain

NA N B

L,(A) U,(A) = _ A,__ 2" + y'_B,.,x/i"77 2n+1

n=O n=O

Ns

= °
n=O

= Sol-I 1+
n=l

(3.73

(3.74

where

Stl

/ "4'V2 n is even

/ B(,.,-1)/2 n is odd,

Ns _l

= {zerosof the polynomial_ Too(-1)'_'}.
l=O

(3.75)
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The factorization of (3.74) isagain trivial uponmaking useof the well known splitting

germaineto the impedancehalf plane problem [:34].Noting that

= (:3.76)
" K+ (5; 7) I(_ (a: ,7)

we have.

where

_-,(.x) = L_ (-.\) = ,_
l-t;__--_Ii+ (A; 1/7,,.)

and

sc__(.\: 7) = A'_ (-.\: ,1) =
I I<_-(A'_;,

(:3.77)

Re(rT) > 0
( 3. TS )

Re(rT) < 0.

_ _2 sin c_/2_//_sIris=(3_/2 - _ - 0)_. (,'/e - _ + 0_]_
Kt (cos ct" 77) = (:3.79)

i,, th_aboveR_(__>0),Sm(X/_- _/__)__0,0= sin-i(r/),0_< Re(0), and m. is

the Maliuzhinets function E22], whose evaluation in algebraic form has been given

in [50]. Whereas the zeros of U<<.(X) represent the waveguide modes, the zeros of

L, (k) (which are the poles of K_) correspond to the surface waves supported by,

the material layer. Although not required in this analysis, these are easily extracted

from (3.78) and (a.79).

The expressions (3.68) through (3.79) provide a complete description of a GIBC

implementation and permit the simulation of any multilayered coating. \\re remark

that a unique GIBC modeling of a given coating does not exist: in fact one may

employ GIBCs of substantially different character to simulate the same configura-

tion. This point is discussed in the following section and some numerical results are

provided for illustration purposes.
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In this section GIBC simulations of various material inserts are presented and

compared with exact results available for the case of a single layer. Due to its

greater interest, data is presented only for the Hz polarization case. The CIBC

employed here-in are given in chapter two. These are valid for arbitrary multilayer

coatings and are therefore suited for this application. In particular, these muhilayer

GIBC are synthesized by com!:,ining the component-layer GIBC in an appropriate

manner, pointing to the necessity of understanding :_i_:gle layer simulations in order

to construct multilayer ones.

Figure 3.3 shows tile far zone pattern of a single layer insert (e = 2 -- j.0001, # =

1.2. r = .2,\) modeled by various "low contrast" GIBC (i.e. those GIBC which

improve as the layer thickness or index of refraction decreases). To illustrate their

relative contributions to the far zone pattern, the direct diffraction and modal contri-

butions have been isolated in Figures 3.a(a) and a.3(b), respectively, with the overaI1

result presented in Figure a.3(c). We note that for this low contrast GIBC, an 8 th

order simulation provides a reasonable approximation to the diffraction pattern.

In Figure 3.4, both the thickness and the index of refraction have been increased

in a low contrast simulation of a (single layer) material insert with e = 3.5 -j.0001,

# = 2.0, and r = .4A. In contrast to the previous figure we now observe that a

"20 th order simulation is required to obtain a converged result. This degradation

with increasing index of refraction proves typical of low contrast simulations and

illustrates the need for other types of GIBC whose performance improves in this

range of material parameters.

In P'igure 3.5 the same material insert corresponding to the data of Figure 3.4
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Figure 3.3: Hz polarization backscatter echo width for a material insert with r = .2A,

e = 2 -j.0001, # = 1.2 modeled by low contrast GIBCs (see Table 3.1 for

an explanation of the legend entries). (a) direct diffraction component

(b) modal component (c) composite.
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._]gure :1.4: H: polarization backscatter echo width for a material insert with r = .4,\.

= 3.5-j.0001,/_ = 2 modeled by low contrast CIBCs (see Table 3.1 for

an explanation of the legend entries). (a) direct diffraction component
(b) modal component (c) composite.
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is simulated with high contrast GIBC (i.e., a GIBC which improvesasthe index of

refraction increasesor as the laver thicknessdecreases).In contrast to the data in

Figvlre:3.4.wenowobservethat onh"a secondorder high contrast GIBC simulation is

reciuiredto accuratelyevaluatethe far zonescattering. This differencein performance

between the low and high contrast GIBC stems from the type of approximation

employedin their derivation and the reader is referred to chapter two for a more in

depth discussion. Someinsight on the type of simulation provided by the low and

high contrast GIBC may begained through an examination of the waveguidemodes

predicted by the different simulations. Theseare presentedin Tables3.1 and 3.2for

tile single laver simulations correspondingto the data in Figure 3.4 and 3.5.

Tile exact modesgiven in the table aregeneratedby the equation

_= , =o,I,2, .... (3.so)

\Ve observe that as the order of the low contrast simulation is increased, the data in

Table 3.1 reveal that the waveguide modes are "picked up" in a sequential manner

corresponding to increasing n in (3.80). On the other hand (see Table 3.2), the

high contrast GIBCs pick up the n = 2 exact mode immediately and then %ranch

off" to pick up the other modes. The discrepency in pattern convergence between

Figures 3.4 and 3.5 clearly suggests that the n = 2 mode is the most significant in

terms of diffraction (for this particular configuration). We explain this physically by

noting that the n = 2 mode may be resolved into its constituent rays which strike

the interface at a characteristic angle (say 0_ °_) which is greater than the critical

angle 0 _ of the material insert. On the other hand, the n = 0 and n = 1 modes are

associated with characteristic angles less than the critical angle. This implies that

upon coupling into the slab, the n = 2 waveguide mode is partially transmitted into

fr_e space while the lower order waveguides modes remain bound.



66

==
o 20.0

E
oo1o.o

0.0

-10.0

-20.0

_-30.0

__-4o.o
,4

(a)

• ,,I .... I .... I .... I,_,,I ....

0 30 60 90 120 150 180

Angle in degrees

(b)

_, 20.0

o==,10.0

0.0

 :,oo
_-2o.o[ Exo°,(Smod,,)
c-30.0 _- "H;C"(O"2LI)

...."_-,o.o_....'....'....ii.'i'.,ii.,,....
0 30 60 90 120 150 180

Angle in degrees

20.0

0.0
0

--10.0

-20.0

-40.0

(c)

n

Exo¢t(8 mode=)
....c..[0...2.1]....
H,C,(_,S._).......

• ,,I .... I .... I .... I .... I ....

0 30 60 90 120 150 180

Angle In degrees

Figure 3.5: H_ polarization backscatter echo width for a material insert with r = .4A,

e = 3.5-j.0001, # = 2 modeled by high contrast GIBCs (see Table 3.2 for

an explanation of the legend entries). (a) direct diffraction component

(b) modal component (c) composite.



Exact Modes L. C.(l,2,1) L.C.(5,6,3) L.C.(9,10,5) L.C.(13,14,7)

2.6458 - jO 2.6458 - jO 2.6.158 - jO 2.6458 - jO 2.6,158 - i0

2.3318 - jO 2.3324 - j.1518 2.3303 - jO 2.3318 - jO

0.8660 - jO.O001 -2.3324 - j.1517 1.7608 - j.O001 1.1583 - j.O001

L.C.(17,18,9)

2.6,t58 - j0

2.3318 - jO

0.8782 - j.O001

L.C.(21,22,11)

2.6-15_ jO

2.3318 j0

0.86612 - j. O001

0 - j2.6575 2.3156- j.1518 1.5228 - jl.4058 0.8198 - j19935 0.3937 - j2.6289

O- j4.2464 -2.3156-j.1517 -1.5227 - jl.4058 -0.8197 - ji.9934 -0.3936- j2.6289

0 - j5.6624 3.0782 - 12.1345 2.2444 - j2.5318 1.6576 - j3.1906

0 - j7.0178 -3.0782 - j2.1344 -2.2444 - j2.6318 -1.6576 - j3.1906

0 - j8.3404 4.1090 - j2.8858 3.1642 - j3.5300

0 - j9.6,t37 -4.1090 - i2.8858 -3.1642 - j3.5300

0 - j10.93.t8 5.2.191 - 33.50(5

0 - j12.2168 -5.2491 - j3.5008

cy)
--.|

Table 3.1: Low contrast approximation to waveguide modes for a layer with e =

3.5- j.0001,# = 2.0, and r = .4A. For each low contrast boundary

condition, the three numbers of the colurml headings indicate the order

of the approximation in thickness -r, the order of the resulting boundary

condition, and tile total number of modes (see chapter two).



Exact Modes

2.6458 - jo

H. C.(0,2,1) H.C.(1,4,2) H.C.(2,6,3)

2.3318 - jO 5.5825 - j.0023 2.2571 - j.O001

0.8660- jO.O001 0.8667- j.O001 0.8649- j.O001 0.8660- j.O001

0 - j2.6575 0 - j2.1309

0 - j4.2464

H.C.(3,8,4)

7.9636 - j.0032

H.C.(4,m,5)

3.2862 - j. O001

2.2813 - jO 2.2714 - jO

0.8660 - j.O001 0.8660 - j.O001

0 -j2.0694 0.6002 - j2.2920

-0.6002 - j2.2920

Table 3.2: High contrast approximation to waveguide modes for a layer with e = 3.5-

j.0001,p = 2.0, and r = .4X. For each high contrast boundary coildition,

the three numbers of the column headings indicate tile approximation in

the index of refraction _-1, the order of tile resulting boundary condition,

and the total number of modes.
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The above hypothesis may be tested by computing exact solutions in which the

selection of tile included waveguide modes parallels the order in which they are

picked up depending on whether a low or high contrast GIBC simulation is employed.

Figure :3.6 depicts a high contrast simulation of a single layer having e = 11 -

,j.0001,# = 7, and r = .4,\. The 10-mode result is a pattern obtained by adding in

modes sequentially as determined from (3.80), thus paralleling a low contrast mode

selection scheme. On the other hand, the single mode result contains the contribution

c,f only the n = 7 mode (the mode with 0_ > 0_), thus, paralle!iag the high contrast

mode selection criteria. This clearly verifies that the most significant waveguide

modes are those that are "visible", i.e. those with 0 "_ > 0 c.

Finally, Figure :].7 provides a simulation of a three layer insert composed of two -.

,,,gh contrast layers (e : ll-j.0001, # = 7, and r = .4fl and e = 3.5-j.0001, # = 2.0,

and r = .4,\) placed beneath a low contrast layer with e = '2 -j.0001,/_ = 1.2 and

r = .2A. These are precisely the layers considered earlier in isolation. One might.

therefore, expect that the order of a GIBC which provided a converged result for

the single laver simulation will also provide an equally acceptable simulation when

the slab is part of a multilayer stack. For the case at hand this is indeed true, as

evidenced by the converged 9 th order result. We also remark that the presence of

the two high contrast layers enhances the modal contribution to the total diffraction

when compared with the single layer data given in Figures 3.a(b) and 3 3(c).

3.7 Summary

In summary, the scattering from a vertically inhomogeneous slab recessed in a

ground plane was obtained through application of the generalized scattering matrix

technique in conjunction with the dual integral equation approach. The solution was
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a,b,c(d,e), a and b denote the approximation in x-1 of the high constrast
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3, while d is the order of the composite GIBC and e is the total number

of modes.
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specializedto the caseof a muItilayeredslab simulatedwith a generalizedimpedance

boundary condition (GIBC). Results weregiven for varioussingle laver inserts and

it wasseenthat in the caseof materials having sufficiently high index of refraction,

high contrast GIBC simulations convergedmore rapidly (with respect to the order

of the GIBC) and performed better than low contrast simulations. Finally, results

werepresentedfor a 1,\ thick iosslessthree-layerinsert containing both high and low

contrast layers. It wasshown that the simu]ation convergedat the point predicted

by the individual laver simulatio,_,;,_uggestinga method for constructing muhilayer

simulations.



CHAPTER IV

GENERAL SOLUTION OF THE

DIFFRACTION BY A MATERIAL

DISCONTINUITY IN A ?:HICK

D IELECTRIC/FF, ..-qRITE SLAB

In this chapter and the following one it is demonstrated that a GIBC/GSTC

sheet characterization can yield a unique solution when supplemented with certain

conditions at the sheet discontinuity which do not require an apriori knowledge of

tile edge fields. As a vehicle for presenting this solution procedure we employ tile

dual integral equation method to consider the plane wave diffraction by a discon-

tinuous distributed sheet (see Figure 4.1(b)). This very general model is capable of

representing material half-planes, material junctions, and material discontinuities on

grounded structures, such as those shown in Figure 4.2. In addition, a distributed

sheet model typically renders the same degree of accuracy as the usual infinitely-thin

sheet, but with a lower order condition. It is, therefore, of much practical interest.

In the first section of the chapter, the GSTC representation of the distributed

sheet discontinuity is used to develop dual integral equations in terms of the un-

known spectral functions proportional to the sheet currents. These equations are

then solved in the standard manner to yield expressions for the spectral functions in

terms of unknown constants. The constants are dependent on the material and geo-

73
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Odd GSTC" u,,t-'_"JtF F } ÷LU,_ :"

Even GSTC" U2,[-_)tF+F} _2

=0

=0

-I),

X

(a)

Y

I I I I 2 2 2 2

U 11,U 12,U2 I, U22 U II,U 12,U21,U22

(b)

Figure 4.1: (a) Distributed sheet. (b) Distributed sheet discontinuity.
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(c) Metal

X

Figure 1.2: Geometries modeled by a discontinuous distributed sheet. (a) Material

half-plane. (b) Material-material join. (c) Grounded join.
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metrical properties of the discontinuity and their specific value is identified here for

several discontinuities by comparison with a few known diffraction solutions. This

demonstrates the validity of the presented solution, but in general, the determination

of the constants requires the enforcement of additional constraints demanding field

continuity accross the layer discontinuity. The development of these conditions and

their use in solving for the constants are presented in chapter five.

4.1 Dual Integral Equation Formulation

Consider a distributed sheet of thickness r illuminated by the plane wave

rinc = e jk(xc°so°+_sin_°) _ E_,i,,_, E_ polarization,
= (4.1>

[ ZoH_,i,_o, H, polarization,

as shown in Figure 4.1(a). The excitation (4.1) induces reflected and transmitted

fields which are explicitly given by the properties of the distributed sheet. If this

sheet models a symmetric slab, then an appropriate GSTC representation is formally

given by (see chapter 2)

(4.:?)

(4.3)

in which F is the total field, F ± = F (x, y = ±r/2), OxF ± = _F (x, y = ±r/2), and

OyF ± = _F (x,y)1_=±,/2. Also, U_ (--_-) are differential operators which operate

on the field quantity in the curly brackets, and are finite polynomials in --_- whose

coefficients depend on the slab modeled by the distributed sheet. To maintain the

generality of the solution, the 14)j operators are left in symbolic form and the reader

is referred to chapter two for their explicit representation in terms of the material



constants and thickness of the layers comprising the modeled slab. In general, the

order ofltll !i.e. the highest derivative present) is usually the same or one more titan

that of ;_'12 and similarh" the order of N21 is the same or one more than the order of

[{:_,. Thus. we may define the orders of the GSTCs in (4.3) to be

{ order of _t_1 (,\2),i + order of Lt_2 (,k:) }

{ order of N_I (A2) , 1 + order of b/_2 ('\2) }

(4.4)

The reflected and transmitted fields may now be easily determined by employing

(4.:3) to find

F_/l = Rle jk(_°_°-_*in_°) (4.5.t

F_,_ = Tie jk('_°_°+_in_°) (4.6t

in which R1 and T1 are the reflection and transmission coefficients, respectively, and

are given as

[R7°=+ R; (4rt
R1 - 2

[R7 - (4s)T1 - 2

with

sin ¢oZg_2 (cos 2 ¢o)-U_, (cos _ *o)

sin _o/-g_2 (cos 2 ¢o) + M_x (cos 2 ¢o)

sin ¢j.g_= (cos 2 ¢o)-/A_ (cos 2 ¢o)

sin $oN_2 (cos 2 0o) + N_ (cos 2 g_o)"

(4.9)

(4.1o)

\\'e remark that in (4.9) and (4.10), /g/_ (cos 2 ¢o) now represent simple polynomial

functions in cos 2 0o, since -i)x2/k 2 = cos 2 <50 in view of the field expressions ,:4.5,

and (4.6).
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Considernowthe casewherethe right half of thedistributed sheetin Figure .1.i (a)

is replaced by another sheetof the same thickness, but of different properties, as

illustrated in Figure 4.1(b). The GSTC representationof this modified sheetis

_,_,{ o__) J 1{_o_,_{o_IF+-,_-l} : o, (_\--i:ry {s+ + F-} + _u_'__, k-_J J

for -:x: < x < 0 and

^.2 7 {F+-
g'/l'l _}+5 _ {o_IF++_-]}

k2 j
fi ---- 0

( Ox2_ J 2 (_Ox2"_ {Oy [F +-F-]} = 0, (4.12)

for 0 < x < _c, where the superscripts 1 and 2 distinguish the left- and right-hand "

sheets, respectively. Referring to our previous discussion, the orders of the right hand

side GSTCs are given as

\'add
" 2

,\,; t.en

= max { order of /A], (A 2) inA, l+ order ofU]2(A 2) in A}

= max{ order of /d221(A 2) inA, l+ order of U_2 (A 2) inA}. (4.13)

The modified right hand side sheet induces a scattered field F, in the presence of

the excitation (4.1), and the total field can now be represented as

F={F;,,_+F,,.f;+F, 9>r/2 (4.14)

where F, is the unknown scattered field in the region [9] > r/2 and can be expressed

as either [10] [,52]
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Figure 4.3: (a) Illustration of C contour in the complex a plane and (b) complex A

plane.
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or

i:_ i.r. u ) = Podd (,\) (4.t6)
l v"l-,\2'

_q)on invoking the transformation A = cosa. The contour C' in (4.15) is the inte-

gration path in the complex a plane shown in Figure 4.3(a), and its counterpart for

the ,\ plane is illustrated in Figure 4.3(b). Also, the spectral functions Po4J(,X) and

&_._,_(,\) are directly related to the Fourier transforms of the unknown equivalent

currents

via tile relations

Jo_d = F2 - £- (4.1r)

Jo_.,, = F£ + F2, {4.tS)

Assuming that

£Jo_£e(x) = 9 Podd(A)e -jk_'\ dA
" ,)_ ,,/-£- A_- (4. I9)

g_,_,,_(:r) = 9/_ _ P,_,,_(,k) e -jk_' d,k- oo _¢/-_-.v (4._o)

JoMx) ~ x "°'_ as z --, 0

(4.21)

with 0 < Soad _< 1 and 0 < s_,,_ _< 1, from (4.19) - (4.20) and the Abelian theorem

we have

Podd(,_) "" ,_-'°" as I'll--+ oc

P_vo,_(.x) ,.. A-' .... as IAI-_ oo (4.22)

From the asymptotic behavior of Podd ()_) and P_,_ (,_), it may be easily seen that

the integral representation (4.16) is well-behaved and convergent for all z and 9.
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Substituting (4.1), (4.5), (4.6), (4.14) and (4.16) into the transition conditions (4.tl

and (4.12) we obtain

_, (.,-) P+_(a) --

for x < 0 and

.... - j kr,\ y_.._X =f._=2_Cj'''i(,\_)Pond(,\)e vt_._,

dl
0 (4.23

d,\
0, (4.24

v/T-,\_

2 sin _oe Jkxx° eJ_'/2 _in eo Zo,_a (,\2o ]

2 sin ¢_oe lkx'x° e Jkrl2 _in ¢o Z ..... ( \_

......_ (4.26
91 (,o;

for z > 0. where ,\o = cos Oo and

_;,_(.,.)= ,_;,(.,')+_-.,,,,;_(_,)

<..(.,,)= ,1(.,,)+.__,,,j,(.,,)

z._,(.,,o): [,,,,(.,,o),,,,(,,o)-,:,(,,o),:,(,'o)]

.....(.,'0)= [_,j,(,'o),:,(,'o)-_,',(.,'o),_,(.,'.)].

(4.27)

14.2S)

(4.29)

(4.30)

(4.31)

(4.32)

Xote that strictly speaking, the integrals in (2.26)-(2.31) are not convergent because

of the polynomial order of the integrands. This difficulty is common in analytical

GIBC solutions and may be remedied by working with integrated field quantities

as discussed in [39] and [44]. It has been shown, though, that the final solution is

the same regardless of this remedy and for the sake of simplicity we will proceed

with the solution of the dual integral equations as if all Fourier inverse and forward

transforms existed in the classical sense.

E,_iations (4.23) with (4.25) and (4.24) with (4.26) form two uncoupled sets of

integral equations which are sufficient to yield a solution for the unknown spectra
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Podd (A) and P_.¢,_ ()_). Clearly, because of the similarity between the two sets of

equations, once a solution for P_,id(,\) is found, the corresponding one for P¢_.¢=(2)

follows by inspection.

4.2 Solution of the Dual Integral Equations

In proceeding with the solution of Podd (,\) we first rewrite (4.25) in a more suitable

illanner, viz.

f_ _: (,\_) Podd(A)
)o _ v/T-,\2 sin ¢oeJk'/2_in*°Zodd (,\_o) }+ 2rrJ_f dd (_o) ()' + _o) e-Jk_\d_ = 0

{4.33)

for x > 0. Closing now the integration paths in (4.23) and (4.33) by semi-infinite

contours in the upper- and lower-half )_ planes, respectively, leads to the deduction

that

_ odd (,\2) P_d,_(_\)
= Uo (A) (4.34)

sin _3oe jkr/2sin¢°_l 1_2_

+ 2_jGff d (,\_) (A + Ao) Eodd (-Ao) = Lo (,\) (4.3,5)

where Uo (._) and Lo (A) are unknown functions regular in the upper- or lower-half

of the ,\ plane. Also, Eode (A) is an unknown entire function to be determined along

with Poad (A), 5_ (._) and Lo ()_). To solve for these, it is necessary to exploit the

analyticity properties of (4.34) and (4.35) in the different regions of the complex ,\

plane. An important part of this process is the factorization of the _' functions in

(4.34) and (4.35) into a product of upper and lower functions (that is, functions free

of poles, zeros, and branch cuts in the upper- or lower-half ,\ plane, respectively).

This task is described in the appendix. We have

= (a) (a)

=
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= _2+ (,_) - (,x)

(4.:16)

where the s-uperscipts 4- denote upper or lower functions, respectively. Combining

(4.34) with (4.3.5) in conjunction with (4.36) and rearranging terms we obtain

oO_d2(,\) uo(,\) s (_) _gd (,_) Lo(_) Ggd(,\)
+ = (4.371)

_odd(,\)c°'i_ C,\) (A+ &)_gd( _) 2-='1+ ,

where

sin Oo#k'12sinO°Zoad (A2o) Eoda (A)

_ ('\) = 2,_j6_dd(_2o) Eodd(--_o) (_ :]S)

The second term of (4.37) mav be easily split into a sum of upper and lower functions.

and when this is done, (4.37) can be rewritten as

1+ ('\) (A +to) 2+

to (,\ )_ gd (_\)

2-

s (_) [Gg_(A)
-(,\ +,\o)L 5C7- (7odd

_:+ (ao)j

The left hand side of (4.39) is now regular in the upper half of the ,k plane while its

right hand side is regular in the lower half of the ,\ plane. By Liouville's theorem, both

sides must then be equal to a polynomial, and to determine the order of this poly-

nomial it is necessary to examine the asymptotic behavior of the individual terms in

N °rid 2
(4.39). From (4.4) and (4.13) g_:_d ()_) ,,, )_N$"/_, {j{,dd (,k) -,- ,k _ / , implying that the

left hand side of (4.39) behaves as I_I(N_+N__)/=-1-_o_"when [A[ _ ec, provided that

E_d (,\) behaves no worse than IAl(No'_÷_o-)/_-'o"as IAI-_ _. The right hand side

of (4.39) will then behave as the greater of lAIN? a_-_-_oaa and [,\I(N? _+'¢_)/_'-_-_o_

when ]'\l ---' c_c. In accordance with Liouville's theorem, both sides of (4.39) will

{ NI_"_+N"_ }then be equal to a polynomial of order int _ - 1 - Soad • In terms of this

unknown polynomial, we may solve first for Uo ()_) and subsequently for Podd ,\) to
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find that

p,,_(,\) = j sinOoV_-,\2
"2_ .\ + .\o

Eodd(-,\o) +

d.]kr/2 sin ¢o

- _2-t-

.Voaa- 1.9oea - l - m ]
m=l n=O

(4.40)

In this. Nodd = int {1/2(,V 1 ¥2- odd + _ odd + 1)}, and a,nn are arbitrary constants as vet

undetermined, and correspond to the coefficients of the polynomial resulting from

the application of Liouville's theorem. Th_ chosen symmetric form of this polynomial

is not unique but will be found most useful later in constructing a reciprocal form

for Podd (,\).

Following a similar procedure we also obtain P_e,_ (,_) as

j sin 0oV/_-t 2 eJkr/2"in¢o

2:," I + lo

(.\)

+ E E bm_(a+,_o)m(aao) _] (4.4t)m=l n=O

with E,_,,_ (t), Xe_._,_ and bm,_ being the counterparts of Eodd (._), ]Vodd and a,,_n,

respectively. \Ve note that (4.40) and (4.41) imply that the powers $odd and s_._,_

governing the behavior of the equivalent currents Jodd(X) and J,,,,_(x), respectively,

are given as

1 NXode + N2odd is even

1/2 Nloaa + N2odd is odd

1 N_,,_ + N_,,_ is even

1/2 N_,,_+N2_,,_ isodd

(4.42)

(4.43)

To determine the unknown entire functions Eodd (t) and Ee_,_ (t), we observe

that the spectra Poda (.\) and P_,_ (.\) must exhibit a reciprocal form, which may be
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achievedbv setting Eodd (,\) and E,ve,_ (,\) equal to any of the following functions:

Zo_ (-,\,\o) or
Eodd (,\) = Z_d d (,\) or (4.44)

Z_d(A)

Z,w. (-_,\o) or
E_e,_(A) = Z2_,, (,\) or (4.4,5)

z%, (.x)
+

where Zodd,_v_,_ (,\) and Z_dd,_, _ (A) are upper and lower functions satisfying the re-

lation

Zo_d,even (_ 2) += Zodd,e_o,,(),)Z2_d,,,,,_(_) (4.46)

Taking into account the choices (4.44) and (4.45), we may substitute (4.40) and

(4.41) into (4.15) and subsequently perform a steepest descent path evaluation to "

obtain for p --* oc (all surface wave contributions are neglected in this evaluation)

e-jkp

F (p,,)--, [Dodd(_,,¢o)+ Dovo,,(,_,_o)]VkPI"=--2_
(4.47)

where (p, _) are the usual cylindrical coordinates and Dodd (8, ¢o) + D_,_,,_ (¢, ¢o) is

tile far zone diffraction coefficient symmetric with respect to ¢ and 8o. We have

e =.,/4 sin ¢o sin ¢

Dodd (0, ¢o) = 27r cos ¢ + cos ¢o

eJkr/2(sin ¢o+t sin _1)

G__d(cos_) _V_d(co_¢o)_d+,,(cos,_)_ (cos¢o)

• 2o_(_ose, coseo)+ E _ a_.(cosC+cosCo)"(cosecosCoY (4.4s
m=l n=0

e -j"/4 sin ¢ol sin 81

D_v_,_(¢,¢o) = 2zr cosO+cosq_o

ejkr/2(sin 4_o+[ sin ¢[)

_,_°_'_'_(coso) _p_"_(cos*o)_+_" (cos¢) _+"_°"(cos¢o)

[ '%°"-' '%°"-'-" ]. 2,_,_(cos,,cos,o)+ r, _ bm',(c°s¢+c°S¢o)m(c°s_c°s¢o) "
m=l n=O

(4.49
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in which the functions 2odd,_,.,,,., (cos 6. cos Oo) are given by (see (4.44) and (4.45))

{2,_ (cos 0, cos 0o) = or (4.S0)

Z_w_ (- cos 0 cos 0o) or
2_e. (cos 0, cosOo) = gg_,_(cos¢)Z£.,,(cos¢o) or (4.51)

+ (cos ¢) Z+,o. (cos _)g*oC_

Because the above three choices for 2odd and 2,_e,_ differ only by terms of the form

Zo_ (- cos e,cos ¢0)

Z&d (cos o) Zo%_(cos oo)

z_ (cos o)z_ (cos 0o)

(cos _, r cos Oo) m (cos ¢cos 0o) _, it is immaterial which of them we choose, although

one of the choices may likely lead to a more compact representation. Nevertheless,

regardless of the choice of Zodd and Z,v,,_, one is still faced with the determination of

the unknown constants am,_ _nd b_,, in (4.48) and (4.49), respectively. These are a _

manifestation of the non-uniqueness of the finite-order GSTC sheet model employed

herein, and their explicit determination requires the introduction of additional con-

straints pertaining to the physics of the problem as discussed in chapter five. In some

cases, however, these constants can be determined by comparison with alternative

diffraction solutions, and this is considered next.

4.3 Discussion of the Solution and Some Applications

4.3.1 Diffraction by thin single layer discontinuous slabs

The diffraction coefficient given by (4.48) and (4.49) is very general and can

model a wide variety of geometries. To check its validity, display its versatility, and

assess the relative importance of the unknown constants, we consider several simple

configurations which can be modelled with the proposed GSTCs. Their geometries

are shown in Figures 4.4(a)-4.4(c) and include the single layer join, the material-metal

join. and the material half plane, all of thickness 2w. Herewith, these are modele, l
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Figure4.4: Thin slab structures and their distributed sheet representation (a)

Material-material junction. (b) Material-metallic join. (c) Material half-

plane. (d) Equivalent distributed sheet.



88

by a distributed sheetdiscontinuity of thickness2(w - ws) (see Figure 4.4(d)) and

although, in general, it is not necessary to employ a sheet thickness different from

that of the slab, this is useful here for comparison with previous results.

If the left hand side of the slab is assumed to be thin and having a low index of

refraction, it max; be modeled by a low contrast GSTC sheet. Thus, an O(tc ,i, wJ)

approximation with terms of O(tv,w) neglected is sufficient for the representation of

the operators or polynomials g/ilj. In particular, we have

= i

= jk (ulw - w,)

----- Ws + -- _'s, ,,1 -£ _ Ox_

= 1

where el and/21 are the relative permittivity and permeability of the left hand slab,

respectively, and

/_l, E, polarizationul = (4.53)
el H, polarization

Also, when ws = to, these are simply the transition conditions derived first by We-

instein [59] and later by Senior and Volakis [ag]. The corresponding polynomials to

be employed in (4.27) - (4.32) are given by

Zf), (- cos e cos _o)

U#_(- cos _ cos #o)

U_l (- cos _ cos _o)

/_6:(- cos ,vcos _'o)

= 1

= jk (u_w - w,)

= w, + jk - w,
k Ul _1

= 1

Incorporating these into (4.48) and (4.49) and setting

2o_d(_os o, cos 0o) = Zo_d (- cos _ cos _o)
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2_,,_,_(cos o, cosOo) = Z_v_,_(-cos¢cos¢o) (4.56)

yields

Dodd(¢,_o) = e -j'_14 sin¢osin¢ ejk,./2(¢m,oHSi_¢l)
2r, cosO+ cOSOo

_G (-- _os Ocos ¢o) -- jk (_,_' - _,,)U3, (- cos 6 cos ¢o)

'M_ (coso;.:_od_,_)M_ (cosoo;._odd,_)G_d+d(cosO)G_d+d(cosOo)

e -j'/4 sin Vol sin ¢I ejkr/2(sin¢o+lsin,_q)
D,_.,_(O, 0o) = - 2_ coso+cOS0o

' { [ _ I + _ _0_ _:5 COS 00] U_: ( l COS _ _OS _0} l U_ ( l COS _ COS _0)

(4.5r)

=: ).L_ (cos O; ;_,',, ) M_ *"*'_ *_"*'_

blO (COS 0 @ COS _o) ]

+,_@,,,=,.L(coso;_,_ ):_L ¢o; _+ (coso)_:+ (cosoo)

where the split function M_ (cos ¢; 7) is given in the appendix,

(4.5s)

\ U 1

jkw
a3 - (q#l- 1)

Ul
(4.59)

and

_odd,1 --__
-j

even,1 lL1 + 4 u21 +4k2w(q#'- 1)(wl_lw') (4 ._ 0 )
71,2 = 2jk (w - w,ul)

with 7 °ad o, ,,,,,_ representing possible surface wave poles. To complete the definition

of (4.57) and (4.58), the functions associated with the right hand side properties of

the slab (i.e. those functions with the superscript 2) must be specified. Referring

to the configurations in Figure 4.4(a)-4.4(c), Table 4.1 and Table 4.2 provide ex-

plicit expressions for the functions 3/2 (- cos ¢cos ¢o), oode2+(cos ¢) g_ff (cos oo) an,l



Geometry, x > 0 L/_l (--cos¢cOS_o) U_2 (-cos¢cos¢o) _+_°dd(COS¢)Go_+ (cOS¢o) I 7°dd'2

Low Contrast O(w,w,) 1 jk(u2w-w,) M+ (cos ¢;7_ d'_) M+ (cOS¢o;7; rid,2) -,

Free Space Limit 1 jk(w-w,) M+(cosdP;71°dd'2) M+(cosdpo;71 rid,2) --2___

PEe(Ez-pol) or PMe(Hz-pol) 1 0 1

PMC(Ez-pol) or PEC(Hz-pol) 0 x/1 - cos ¢_/2 - cos ¢o

Table4.1: Odd symmetry parameters for distvibute(I sheet similation of right han(l

side material x > 0. See Appendix 1 for detinition of 211+ split ltmctions.



Geometry, x > 0 b/_l (- cos _ cos ¢o),//_2 (- cos ¢ cos _o) _'" (cos ¢) G_y__ (cos ¢o)

Low Contrast, O(w,w°)

Free Space Limit

PEC(Ez-pol) (b,o = O)

or PMC(Hz-pol) (b,o = O)

PMC(Ez-pol) or

PEC(Hz-pol)

=jk - w.) jk¢os co  o(. ,..)
k u2

U_=l

u_, = j_ (w - w.) (1 + cos _ cos _o)

/,/222=1

((2t£2 l 2 eve,*,2_ -- even 2- ) fl.,_, M+ (cos 0; (co_ 0o;"_m ) 37+ _tm ' JU2

with _t;,__"a = 2jk( ...... )

[ _. even,2\ a.t (COS _ even,2_vq-cos_v/i-cos_oH_ _osg,_, )_,+ _o;_, )

even,2 -3

with 71 = k(_-_.)

vq-- cos _J1 - cos _o

Table 4.2: Even symmetry parameters for distributed sheet similation of right hand

side material x > 0. See Appendix 1 for definition of M+ split functions.
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-'*_*" (cos O) _'_ (cos Bv edge condition considerations, all of the con-92+ _2+ _o) terms.

stants a,,,,_ and b_ have been set to zero except bm appearing in the definition of

D,_,_. which is non-zero unless the right hand side slab is a PEC/PMC under an

E:/H: exaltation (see Table 4.2).

4.3.2 Diffraction by a resistive-resistive junction

When u., = w,, and the material parameters of the slab geometries in Fig-

ures 4.4(a) and 4.4(c) take the limits

E1,2 "-+

#1,2 --+

7---.+ 0

e

7/1,2

jk_(,,_,=- 1) --, !
_, (4.61)

7"]1,2

the resulting configuration corresponds to coincident resistive and conductive sheet

junctions [37], where r/_,2 and rh,_ denote the resistivities and conductivities of the

respective sheets. In this case, the constant b10 is forced to zero by the edge condition,

and (4..57) and (4.58) simplify to

Do_d(cos V,cos ¢o) =

sin ¢ d (cos ¢, cos ¢o) (1/r/_ - 1/r/_')

M_ (cos ¢; 1/_?) M_ (cos ¢o; 11_?) M+ (cos ¢; I/_')M+ (cos _o;11_2_ 62)
D,_,,_ (cos ¢, cos ato) =

Isin ¢1 d(cos ¢, cos ¢o) (_; _ _)

M_ (cos ¢; 1/'7_) M_ (cos ¢o; 1/,7D M+ (cos ¢; l/,Tf) M+ (cos ¢o; 1/_ (46a)

for E: polarization and

Dod_(cos e', cos 6o) =



93

sin O d (cos ¢5,cos 0o) (i/,_ - 1/,i)
(4.64)

._s_(cos _; 1/,_) M_ (cos 0o;1/,1) M+ (cos ®;1/,_) M. (cos oo; 1/,_)

D,L__, (cos o, cos Oo) =

I'sin 0[ d (cos 0, cos 0o) (77_ - r/p)

M_ (cos 9; t/_?) M_ (cos 9°; i/_?) _+ Ccoso; 1/_') M+ (co_oo; 1/_>--56_)__

for H: polarization, where

d(_os _,cOS_o) = -
e -a'_/4 sin aSo

2u cosO+ cOSOo
(4.66)

_ (i.e., the resistive sheets disappear), thenNote that if both rh, rh _ ec

Dod_ (cos _, cos 0o) and D_,,_ (cos O, cos _5o) tend to zero for H. and E, polarizations,

respectively. On the other hand, if both r/_, r/_' -+ oo (i.e., the conductive sheets

disappear),then Dodd (cos 0, cos Oo) and D,_,,_ (cos 0, cos ¢_o) tend to zero for E_ and

H.. polarizations, respectively. This is, of course, because resistive and conductive

sheets scatter independently of each other. Consequently, the field diffracted by a

resistive to conductive sheet junction is the superposition of the individual sheet

contributions [39].

4.3.3 Diffraction by grounded metal-dielectric junctions

Of the geometries shown in Figure 4.4, the diffracted field associated with the

metal-dielectric junction (Figure 4.4(b)) is given in chapter three and can therefore

be used to partially validate the derived solution. However, in order to study only

the effect of the constant blo, we need to exclude the odd-symmetry portion of the

metal-dielectric join diffraction coefficient. To this end, we focus on the recessed slab

geometry of Figure 4.5(a), whose H, polarization diffraction coefficient is related

(through image theory) to that of the metal-dielectric join by

D_,(cos0, cos 0o) =2D_ (cos&,cos &o) (4.67)
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Figure4.5: (a) Recessed slab (PEC stub) (b) Grounded slab with truncated upper

plate (c) Recessed slab (PMC stub) (d) GIBC sheet
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with D_, given by (4.58) along with the PEC(H_-pol.) entries of Table 4.2. As

noted above, for a right hand side PEC slab with E= polarization, the edge condition

demands hi0 = 0 in this case.

For the recessed slab geometry illuminated with an H_ polarized plane wave, the

GSTC (4.11) and (4.12) become the GIBC

- {p+}+ 5u 2\

for-_c <z<0 and

"

for 0 < x < oc, with the Z_2 operators given in (4.52). Clearly, these GIBC can

represent any of the configurations displayed in Figure 4.5(a)-(c) without regard to

whether a stub (PEC or PMC) or not is placed at the junction. This information

can only be carried by the constant bl0 as the term distinguishing the diffraction

coefficients among the geometries of Figure 4.5(a)-(c). Thus, the determination of

hi0 must somehow involve the properties of the junction across its thickness and

this is discussed in chapter five. However, since the solution of the configuration in

Figure 4.5(a)-(c) are already available in chapter three, bl0 can be identified for each

geometry by comparing (4.58) with the appropriate solutions given in chapter three.

Upon setting w, = 0, we find

bn0o stub = jkw_el 1

bPeC stub
lO

bPmC stub
10

Jkwv/-_/_'

2

+1/2

{4.TO)
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corresponding to the constants associated with the diffraction coefficients for the

geometries in Figure 4.5(b), Figure 4.5(a), and Figure 4.5(c), respectively. We note

that these constants are based on the choice of Z_ve,_ (cos 0, cos ¢o) as given in (4..56)

Had this function been chosen as

2_v,, (cosV,cos¢o) = z&_ (cos0) z%,_ (cos0o) (4.71

the resulting constants would have been

bP0Ostub = 0

bPeC stublo = -jkw

bPoec stub=-jkw_

+ Jkwx/-_

2

+ 1/2

/:

(4.7__)

and the more compact representation of the no-stub diffraction coefficient is at once

evident.

To assess the importance of the constant bl0 with respect to Z_,_ (cos ¢, cos 0o)

as given in (4.56), we plotted in Figure 4.6 the backscatter echo width patterns

associated with the three configurations in Figure 4.5(a)-(c) and have compared these

patterns with that computed by setting bl0 = 0. The chosen relative constitutive

parameters for the left hand side slab are e = 2 and # = 1.2, and the entire slab is

of thickness w = .04A (where here ,\ denotes the free space wavelength). We observe

that the backscatter patterns are, in general, substantially different, underscoring

the importance of the constant. Although/,P_ _,_,b"1o is nearly zero in this case. it will
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Figure 4.6: Hz polarization backscatter echo width for a material insert having w =

.04A, ¢ = 2 -j.0001, # = 1.2 modeled with O(w) low contrast GIBCs
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Figure 4.7: Hz polarization backscatter echo width for a material insert having w =

.10_, _ = 2 -j.0001, # = 1.2 mode|ed with O(w 3) low contrast GIBCs;
blo = -.4578 +j.2593, bu =-.0408-j.0111, b2o = -.0401 -j.0388.
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not be so when w becomes larger. For example, if w is increased to 0.1,\, a 3 Èg order

low contrast GIBC with terms up to O(w 3) is required for an accurate simulation of

"the dielectric. In this case the constants bl0, bll and b20 are non-zero and as shown

in Figure 417 they play a major role in providing the correct diffracted field by the

recessed slab of Figure 4.5(a).

4.3.4 Diffraction by a thin dielectic/ferrite half plane

Another configuration whose diffraction has been examined in the past is the thin

dielectric half piane shown in Figure 4.4(c). If a 2 '_d order GSTC with terms up to

O(tc) is employed for the simulation of the layer, the resulting diffracted field is given

by (4.57) and (4.5S) in conjunction with the "free space limit" entries in Table 4.1

and Table 4.2 for the right hand slab. The constant bl0 must again be specified for a

complete determination of the diffraction coefficient. We remark, however, that if bl0

is arbitrarily set to zero, then for w, = w the sum of (4.57) and (4.58) reduces to the

diffraction coefficient already derived in [54]. Similar assumptions about the value

of the constant have also been made in [32] and although this may be acceptable in

some cases (i.e. for extremely thin layers or layers of certain composition), it was

already demonstrated above that the constant(s) play an important role and must

be accurately determined. This is the subject of chapter five.

4.4 Conclusion

In conclusion, we have derived a general solution for the diffraction by a discon-

tinuous distributed sheet representing a multilayered slab discontinuity. The solution

can be specialized to a wide variety of material junctions and discontinuities by an

appropriate choice for the polynomial operators U_ and /_/_. Unfortunately, un-
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known constants arise in the final solution due to the non-uniqueness of the finite

GSTC/GIBC sheet representations. In comparing the derived diffraction coefficient

to a previous result for the material half plane, it was shown that the single unknown

constant ob'cained herein was implicitly assumed zero in [54] and [32]. The impor-

tance of the constant was examined for the case of three grounded slab geometries

whose GIBC modeling differed only by the value of a single constant bl0. This com-

parison demonstrated that for very thin metal-dielectric junctions, the constant bl0

was approximately zero, whereas for thicker junctions the constant(s) played a more

crucial role.



CHAPTER V

RESOLUTION OF NON-UNIQUENESS

ASSOCIATED WITH THE GIBC/GSTC

SOLUTION

In chapter four, a dual integral equation solution was presented for the diffrac-

tion by a multilayer material-to-material junction using a GSTC simulation of the

muttilayer slab. As expected, the solution was in terms of unknown constants and it

was shown that these are dependent on the physical properties of the junction (see

Figure 5.1). Consequently, an approach for determining the solution constants is to

enforce tangential field continuity across the junction. This, of course, demands a

knowledge of the fields internal to the discontinuous slab, which, however, are not

readily available when a GSTC simulation is employed. The Weiner-Hopf solution

in conjunction with the GSTC provides only the field external to the slab, and the

majority of this chapter deals with the determination of the internal field from the

external one given in chapter four.

In the following section, a modal representation of the internal field is proposed

comprised of discrete and continuous spectral components. This representation is

compatible with that given by Shevchenko [45] whose eigenfunctions are chosen to

satisfy the continuity boundary conditions across all layer interfaces including the

air-dielectric interface. Consequently the representation is valid inside and outsid,"

101
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free space layer

1

X

Figure 5.1: Symmetric multilayer slab discontinuity illuminated by a plane wave

the dielectric once the coefficients of the modal representation are determined. This

is accomplished by recasting the Weiner-Hopf or dual integral equation solution of

the same problem from chapter four in a form compatible with the proposed modal

representation, thus permitting the identification of the modal or eigenfunction co-

efficients. These are, of course, in terms of the unknown constants appearing in

the Weiner-Hopf solution and the enforcement of field continuity across the junction

leads to a linear system of equations to be solved for the constants. In the final

section of the paper, several scattering calculations are presented for a few material-

to-material junctions which demonstrate the importance of the constants and the

accuracy of the solution.
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Y

X

Figure 5.2: Symmetric multilayer slab with irregular termination illuminated by a

polarized field excitation

5.1 Modal Decomposition for the Symmetric Slab Problem

Consider a symmetric slab of total thickness r with an irregular termination to

its left, as illustrated in Figure 5.2. The slab is herewith assumed to consist of L

homogeneous layers with the mth layer being of thickness r,_ and having relative

permittivity and permeability e,_ and #m, respectively. When this truncated slab is

subjected to some polarized field excitation, the field to the right of the junction at
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the point x can be written as a sum of odd- and even-symmetry fields. That is

F (z, v) = F °_d(z, V) + F _w_(x, v)

where

(5._)

E.., E_ polarization,F = (.5.2)
ZoH,, Hz polarization,

F °dd (z, g) = -F °dd (x, -y) and F _v¢'_(z, y) = F e"*'_ (z, -y). Following [45], the odd

and even fields everywhere interior and exterior to the slab may be decomposed into

discrete and continuous eigenmodes as

Ngo N:_"

F°dd(z,Y)= E ,4_'*°" ((,_°)_,_)_-'"" +E B2'_d(_)_ -'_''''
rn=l rn=l

(5.3)

F'V*'_(x,Y) = E A,_ ''_*''''' (()_°)2,V) e-Jk*"_° + E Ba""_¢a*'_(Y) e-ik':a_z'" :
rn=l rn=l

+-/00_ c_-'o(3)*"° (,_',v)e-_'_d,_ (5.4)

where Irn{,_ d,_'_'_} < 0 and A = _, with the branch of the square root chosen

so that Irn{_} < 0. In (5.3) and (5.4), k_°dd'_È*'_ are referred to as the cross

section functions corresponding to the continuous modal fields whereas oo_d._,,,_ are

the corresponding cross section functions for the discrete modal fields associated with

the surface waves. The cross section function associated with the geometrical optics

fields is also gi °dd'_v_'_ evaluated at ,k = A_, where A_is a parameter to be determined

later. As can be observed from (5.3) and (5.4), the cross section functions specify the

field behavior in the plane normal to the slab, and hence all information pertaining

to the fields interior to the slab are embedded in these functions. They will be

chosen to satisfy the orthogonality relations (where u(y) is #(y) or e(y) for Ez or H_

polarization, respectively)

/2 k_(,\=,y) qi(_2,9)cly = 0 for A:fi _ ,5 5,
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,_,(y),_(_hy)@ = o (5.6),,(y)

and thus each discrete eigenmode _._ (y)e -jk':x and each continuous eigenmode

qs (j\o y)e_ek=.\ must satisfy the wave equation. Additional details pertaining to

tile cross section functions are given in [45].

5.1.1 Exterior Cross Section Functions

To compute the cross section functions in the exterior slab region [Yi > r/2, we

recall that in accordance with the slab simulation based or_, the generalized sheet

transition conditions (GSTCs), the external fields satisfy the conditions (see chapter

two )

(

u_, -77) t, a:_)

whereF+= F (x.v= _'/-'2),&F+= £r (_,y= ,/2), andOyF+=_r (x,y) I_=,/_-

The operators N 0 (_._Z) are polynomials in -Ozi/k 2 and their explicit forms for the

multilayer slab are derived in chapter two as a product of the functions

qo (urn, n_, rm,-Ox2/k 2) which are completely dependent on the properties of the

rn th layer. In these, the parameter u_ is #_ for E, polarization and e_ for H.

polarization, and n_ = X/'#mem is the refractive index of the rn th layer comprising

the slab. Because of the orthogonality conditions (5.5) and (5.6), each of the cross

section functions • (A 2, Y) and On (y) must satisfy the odd or even GSTC (5.7) or

(5.8). In view of this

_°dd(A2, y) sin [/¢(lyl - r12) lv/F5-_-A:]lYl Z4711 (/_2) j
y v_-A 2

+zx,,(,x_)cos[I<(ivl- ,/2)¢TzT_ }
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Y

+u,_(A_)_2_(1,1,lyl- ,-/2,A_)}

sin [/,. ([yl _ r/2) __._ ]=

: {U21 (A _) <_12(1,1, [y I - r/2, ff)

+u_2(;2)022(1,1,I_i- ,/2, A2)}

(5.9)

(5.10)

where ld_j (A 2) are the same polynomials appearing in (5.7) and(5.8), and 00 represent

the infinite order form of the qij layer operators given in chapter two. Once each of

the modes comprising (5.3) or (5.4) is substituted into (5.7) or (5.8), respectively, the

differentiation implied by -Oz_/f 2 reduces to a multiplication by A_ and the above

_od_ and _'_ are then readily shown to satisfy the associated GSTC.

The cross section functions if2°dd (,\2, y) and _'_'_ (A 2, y) may also be rewritten in

t he form

lYl,odd (A 2) e-jk(M-r/2),li-2Y'Z

+lyl_o_(As)e_(l_i__i_)_s=_

= _;"'"(A l) e-,/'_(l_'t-"/2) '/T:'i_

+f,__e,_ (A2) ejk(I,I-,-/2)v/i':-_i"

(5.11)

(5.12)

for lYl > r12, where it can be easily shown that (5.11) and (5.12) satisfy the orthog-

onalitv relations (5.5) and (5.6). This representation is customarily employed for the

surface wave cross section functions. In particular we set

I_,1-./k(lYI-T/2)_/'-(,X_d) _ hxl > r12 (5.1.3)<I>U(_) = --_
Y

_'_" (Y) = e-Jk(l_l-'/2)x/1-('\fZ°")= ;lyl > r12 (.5.14)
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where A¢_'¢'_'°dd must now be chosen so that (5.13) and (5.14) satisfy their associated

GSTC. By substituting (5.13) and (5.14) into (5.7) and (5.8), respectively, we find

that ,\_d._._ must satisfy the polynomial equations

and can be also identified as the poles of the slab plane wave reflection coefficient.

It is also interesting to note that

_d(u) _- ; lyl>-/2 (5.i;)
)

o;Y"(y) = 'Y , lyt >,/2 (5.1s)

implying that for the multilayer slab the cross section function associated with the

discrete and continuous eigenmodes are of the same generic form given by (5.9) and

(:5.10).

5.1.2 Interior Cross Section Functions

We consider now the determination of the cross section functions for the region

interior to the slab (i.e. in the region lYl < r/2). For simplicity let us first assume

a single layer slab of thickness r = 2rl, whose upper face is located at y = rl.

In accordance with the preceeding, the cross section functions associated with the

external fields are given by

Y

+q12(ul,_l, rl,A2) O_2(1,1,[yl-rl, A2)}; lyl > ,1 5.Z9)
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obtained by setting/dij (A2) = qij (ul, x,, rl, 22 ) in (5.7), (5.9) and (5.10). These are

orthogonal functions and each must, therefore, satisfy the continuity conditions

Ul

tz 1

(due to symmetry it is not necessary to enforce similar conditions at g = -rl). It is

now straightforward to deduce that possible cross section functions satisfying (5.21)

- (5.24) are of the form

,_od_(,x2,_)= Nq12(_l,x,,l_r,,_) (5.25):
y

_P_'_(A_,_) = q_2(u_,_,lyl,A2) (5.26)

for Iyl < r_. Also, in view of (5.21) - (5.24), the cross section functions for the surface

,,'ave modes remain as given in (5.17)- (5.18), provided (5.25) and (.5.26) are used

in place of q2°_d'_È_'_.

As a specific example, let us consider a low contrast O(rl) representation of a

single layer. From chapter four, the truncated GSTC operators Uij (-Ox2/k 2) are

given to O(rl) by

(- k_] = u_ _, k_/ =1 (5.27)

- k2 ] = jkulrl (5.28)

= _ + (5.29

and the corresponding qi3 (,\2) polynomials become

(5.30
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and

Ul

q22 (L/I,/';1, [Y]' "_2) = 1.

When these are substituted into (5.19), (5.20), (5.25) and (5.26) we obtain

(5.35)

(5.36)

as the cross section functions for a single layer slab modelled with an O(rl) GSTC.

For the general case of a multilayer slab, it is necessary that each of the internal

cross sections functions satisfy the continuity conditions at all layer interfaces com-

prising the slab. From chapter two, we obtain that the boundary conditions at the

interface between the L - 1th and L th layer are

\ k2)

"_2L1-1 (--OX2_ {ItLfeven (X'_lt_2 )

-£,-_2 t, _2 )

+-_'_J_'<-'(-°x:_{°"F'_'°(:'"t" ]

y=_,+_,)}=_aT)

=y+_,)} --(a,3s)

where YL is the y coordinate associated with the top surface of the L th layer and the
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operators 7@ -1 (_._l) are given by

{,p.' I- l [
. k_ )

Os:2
qll(Um, i';m, Tm, k2

O:r2
q21 (ttm, _m, Tin, k2

Possible interior cross section functions satisfying these conditions are

tIs°dd(A2,y)

ff_+-"_'<(A2, y)

lyl :DOd_(,\2)q,2(uL,_L,lyI yL_,,),2)
-- y I 1,L

.jc r'_o d d

= (DtT'(,_)q,_(u_,,<_,l_,l-,__,,),_)

+ D_,T' (.X_)q_(uL, _L, I_1- yL-,, ),=)} YL-1 < lYl < _.4z)

in which D *v*'_'°dd (A 2) are to be determined by demanding that the interior and

exterior cross section functions are continuous at y = r/2(= YL). Setting y = r/2 in

the expressions for the external cross section functions (5.9) and (5.10), we obtain

•°=(,,. =./_) : .,: (z)

+-.o(z,. =_-/_)= .. (-)

(5.42)

(5.43)

and when these are equated to (5.40) and (5.41) we find

,_oee(,_2, y) _ I_,1{_£;.,(_)q,_(u,.,<_,lyl-_,_-,,)<_)
Y

+ p_:' (.t:)q=2(UL,,_L, hsl- yL-,, A:)} (5.44)

+P_i-' (X:) q_2(uL,'cc, lYl-- YL-,, ,x2) (5.45)

for YL > lyl > YL-1.

To derive the cross section functions for the other layers, the above procedure

mav be repeated in a recursive manner until all layers are accounted for. Doing so.
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we find that a complete representation of the cross section function everywhere is

I_l > r/'2

(5.46)

y_ > I_t > _-_

I_1< ,u,

-Ft/52 (A2)tin(l, 1, ]Yl- r/2,,\2); t91 > r/2

(5.47)

q25(ut, _, I_I,AS); lyl < y,

when these are used in (5.3) and (5.4) in conjunction with (5.17) and (5.18) we have :"

a complete field representation for z > 0.

5.2 Recasting of the Dual Integral Equation Solution for a

Material Discontinuity

The expansions (5.3) and (5.4) can be used to represent the fields interior and

exterior to the discontinuous slab shown in Figure 5.1. For z > 0, the material

parameters used in the definition of the cross section functions (5.46) - (5.47) must

then be associated with the right hand portion of the slab. Similarly, for z < 0, the

material parameters in (5.46) - (5.47) must be those of the left hand portion of the

slab.

The diffraction by the slab discontinuity shown in Figure 5.1 was the subject of

chapter four where a complete expression for the scattered field was given by em-

ploying a GSTC simulation of the slab. However, owing to the non-uniqueness of the

GSTC, the resulting diffraction coefficient was in terms of unknown constants whose
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determination was shown to require additional constraints. One such constraint is

the enforcement of a boundary condition demanding field continuity at the material

junction, but this requires a knowledge of the slab interior fields and the solution

given in chapter four pertains only to external fields. However, as shown in the

proceeding section, the expansion (5.3) and (5.4) is valid everywhere when used in

conjunction with the cross section functions given in (5.46)-(5.47). Moreover, since

the expansion coefficients remain unchanged for the exterior and interior fields, once

determined, the representation (='.3) and (5.4) can be used to find the field every-

where. Since the exterior field associated with the slab discontinuity in Figure 5.1

has already been given in chapter four, it can be used to identify the expansion co-

efficients. This requires that the solution in chapter four is first recast into a form

compatible with that in (5.3) and (5.4), making possible the identification of the un-

known constants which can then be determined by enforcing field continuity across

the junction. In the following, upon stating the exterior solution we then proceed

with the identification of the expansion coefficients.

In chapter four, the discontinuous multilayer symmetric slab shown in Figure 5.1

was simulated by the GSTCs

_[111 (--OX2"_ {r °dd'+}+ _.._I12 ( lOz2_ {OyF °rid'+} = O, -oo < x < 1_5.4_)t, )

C + ]'j -= O, --oo < x <(15.49)

( {OyFOdd,+= (5.50)

with the superscripts 1 and 2 again denoting the material to the left and right of the

junction, respectively. The total field is the sum of the even and odd components
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and can be represented as

where

F (x,y) = F °d_(x, y) + F _t'_"(x, u)

= { Fi'_(x'y)+F*(x'y)+FÈ_II(x'y)F,,o_(x,v)+ F,(x,y)

Fine (a, y) = e Jk(zc°se°+ysin¢°)

y > r/2

y < -r/2
(_.5'2)

(,5.,_3)

is the incident plane wave field. F,_ft (x,y) denotes the reflected field, which from

(4.5) and (4.7) is gi,..en by

F._v (x, y) - '2

with R_ Jd and R_ _'_ given by (4.9) and (4.10), respectively. Similarly, Ft,=,_, (x, 51) is

the transmitted field, which from (4.6) and (4.8) is given as

(Tjkrsin¢'° [12_;verl__ J_l rid] eJ k(zc°scb°+ysincb°) (,_._)F,,_,,(z,V) - 2

Finally, F, (x, 9) is the field scattered by the discontinuity and upon employing the

dual integral equation method in conjunction with the GSTC (5.48) - (5.51), we find

(from chapter four)

F_(x,v) = U_d (_,v)+ F,'"'n(_, V) (5.56)

where

v oo j Vq-Xo_vff-A_

• Zo_(-_o)+F_. F. a.,.(_+ao)_'(aAo) _
m:l n:0

z°<,.,.(-.x.xo)+ E: }2
m=l n:0

e -.i klu lvqZVie- j k=._d )_
(5.57)

] e-Jkl_'l'/i_ e-Jk':\ d_<,n(A + _o)m(_Ao)_ Vq-_a _ to..:,_)
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In these expressions, ,\o = cos Oo, and

Nodd

2"_'even

g°_ (5) (:odd1+ _1- ('\)

_odd5+ (,\) g_f (A)

_2+ ('\) 5-

Zodd (-AAo)

,?'1
"\ odd

, "2

"_\ odd

-\rl_'en

V 2
* _13e'I'l,

= V 1 1)

__ + +1)}

= (;) (;)*

= [51_i (-AAo)U#2(-AAo)-U_2(-AAo)U], (-AAo)] (6.66)

= o(,_)ofG;-(,v)

= o(_,)of_r.o'' (,_)

: o(,) of_7o,,(,_)

(5.67) :-

(5.68)

(5.6',))

(5.70)

As seen, the scattered field expressions are in terms of unknown constants am,_

and bm,_ and to determine these via the procedure outlined above, we must first

rewrite F (x, y) in a form compatible with (5.3) and (5.4). To do this we need to

identify from (5.52) to (5.58) the discrete and continuous spectral components. The

discrete portion of the spectrum is, of course, comprised of the geometrical optics

and the surface wave fields. These can be identified by detouring the integration path

in (5.57) and (5.58) as shown in Figure 5.3. In particular, for x < 0 the integration

path may be deformed to one over the branch cut in the upper half of the A plane.

capturing any surface wave poles attributed to the zeros of {7_'da (l) and Q_ (,\).

Similarly, for x > O, the integration path may be deformed to one over the brar_,h
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Re(),.) :.
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Figure 5.3: (a) C contour in the complex )_ plane. (b) Deformation for region 1

integrals., (c) Deformation for region 2 integrals.
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cut in the lower half of the )_ plane causing the capture of the geometrical optics pole

at .\ = -ko in addition to any surface wave poles attributed to the zeros of _%,id (.\)
. o t-

and _ (.\).

Through the above deformation of the integration paths in (,5.57) and (5.58) we

obtain

m'°dd (X y) x < 0
(5.71)

_2,ode (x, y) z > 0

rl._v_- (z,y) x < 0F'"_"_(x,Y)jo + F;lweven(x,y) +" diSS
('5. ;2)

_:'°_°_ (x, y) z > 0F_''_'"_o(x,y) + _F_,°_°",_(x, y) +, _us

where for [YI > r/2

F); °dd(x, y) -

F/,_:,°_ (x, v) -

F_,_'_(z,y) _
3o

F];o,'_"(x, y) _

R_d_ =

R7 _,, =

e jkxc°s¢°

1,al _-
y e jkxc°s4a°

I,al _-
ejkz cos ¢5o

2

6jkz cos _o

2

sin OoU_: (cos _ ¢o) - gg_ (cos 2 ¢o )

sin ¢o/g_2 (cos _ ¢o)-/.d_ (cos 2 ¢o)

_inCouP=(_os_¢o) + u#_(¢o_ ¢o)

e jklyl*i_¢° + R°lage -jk(lul-_)_i_¢°}

{eakIuIsin¢o + R_ade-Jk(IvI-_),in¢o}

{eaklvl _ineo + R_ _e-ak(lut-')sin eo }

{e jkluisin¢° + R:'_ene -jk(M-r)sin¢° }

nrl ,odd . (

,., _ V"g-._z£n___og_" '_"*°+V'-(_'I''")')
F _'°_d (z, y) - . I z....1,o,td , .

91 I:IAI -t" Ao

(5.73),

5.74)

(5.7,5)

(5.76)

(5.77)

(5.7s)

• 1,odd - 1 odd

e-._k_.x_ e-akl_tx/1-(,_ ' F

e" (a;'°") _e__. [o_ee(.,>]=+ Gg_.a(Ao) (Ao) i-----_-j ,_=,q,o,,,,

• _o.(_.,o.,_,o_1+ z 2 o_. +_o)_(.,;,o%) (_._)
n=O

Y ,",,,,'a'°'_d- sin ¢o ea_" (sin*°+_/1-(A_'°4d)_)a e-J_*a_'°aae-J_lutx/_-()'; '°""F

_o_(-.,o_°_)+ z _ a_. +_o)_(_>%) <,_._0_
m=l n--.=O
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o,,,j+ E E bm_ + )(,_.s_)
n=0

4Kr.r /'sin_ m /1 IA2 ..... _2"_

x'_'C"" -sinoo e"2 k °TV-'' ']e-Jk_:a_ ..... e-Jkl_lvh-ia_ ..... 12

g=l even 0%\ ,\= .\_,even

.,o,,, j + }2 E <,_ + .,, .,o_ (._.s2)
m=l n=O

ejkr/2(,1/_-_+ l,/T2-_-A2)j g/_-,_v/'f-A=

,._s _ .,o2;_ .\ + ,\o ggd('\)g_'_'_('\o)g°d'_('\)g_2('\o)-_+

[ .o.-,,<,,.-,-m ]' Zo-(-aao)+E F, a...(a+ao)"(aao)_ _-J_'_'/_-'_'_d'X(5.sa)
m=l n=O V_ -- ,\2

r J
_?,o_(_,v) = ,_<

ws I_lYcb .7_,_ a + ao ggd (_) g__d(ao) ggd (a) ggd (,\o)

• zo_d(-a.\o)+_ _ a_(a+ao)_(aao)o _-'_'_"/r_¢-'_"a'_-a
,,.=, n=O ___2 (._._4)

j

• Z.,e_(-a_o)+_ S] b_(_+_o)m(_o) n " "
m,----1 n=O V_--A2

y_,_,e_(_,V)=

• Ze.n(--_o)+_ E b_(_+_o)m(_o)" c'_'_"/_=r'-_-_'"d__s6))
,-,,=_ ,,=o V_ _A2 "

In these, the components F_o, F,,_, Fdiff denote the geometrical optics, surface wave,

and branch cut (or diffraction) contributions to the total fields. Also .._'_,,_ is the

number of captured surface waves (i.e., those with normalized propagation constants

,\_'_ such that Ira {A}} > 0 or Ira {A_} < 0).
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To identify the expansion coemcients Am, Bin, and C (A) appearing in (5.3) and

(5.4), (5.73) - (5.$6) must first be rearranged. By making use of (4.9) - (4.10), (5.61)

- (5.64), and (5.77) - (5.7S), the geometrical optics terms can be rewritten as

F)'_ (z. y)
o

F]; °d_ (z. y) =

o

F 2''v'_ (x,y) =
jo

y sin OoeJk_¢°_¢°eJk'/2"ino° [pyl :) Ul' 

+/'/;2 (A2) cos (k sin do [[y - r/2])]

y sin OoeJkxc°S¢°e jkr/2sin_° [

+t_'h (A:) cos (k sin ¢o [[y - r/2])]

y sin OoeJkzc°S¢°e )kr/2sine° [

+Z4_2 (A:) cos (k sin Oo [lyl- ,/2])]

y sin doeJkzc°s¢°e jk'/2sin¢° [Geven(,,_) _"_21 (a 2)iyl

+5l_: (A:) cos (ksin Co [lyt - r/2])]

jsin(ksin¢o[ly I-r�2])

sinOo

(5.S7)

jsin(ksinOo[[yl- r/2])

sin ¢o

(5.ss)

j sin (ksin¢o [[yl- r/2_.)

sin ¢o

(5.s9)

j sin (ksin ¢0 [fYl - "/2])

sinoo

(5.90)

The bracketed terms in (5.87) - (5.90) are now readily recognized as the cross section

functions given by (5.46) and (5.47) once )% is set to cos ¢o. Thus, from (5.3) and

(.5.4) the geometrical optics fields may be expressed as

F_g°dd (x,y) = A;dd (Ao) gt; de (A2o,y) e"ik_¢'_¢° (5,91)

F 2'°dd (x,y) = A_ dd q2_dd cOS¢ogo (Ao) (A2o,y) ejk_ (5.92)

F_o_,,.,_(x,y) = A;._,_(£o)kO;._. (A2o, y) ejk_¢O.,o (5.93)

F]o_'_'_(x,y) = Ai"_'_()%) ¢i""" (A2o, y) e'ik::¢°'¢° (5.94)

where the A expansion coefficients are identified as

A dd(Ao)
sin d)oejkr/2 s'm¢o

odd ),2"1
G1 ("o'

sin ¢oe _k'12 _'_ *°

(5.95)

= _dd (_o2) (5.96)

sin ¢ oe j k" /2 ,in ¢o
= (5..q7)

(Ao)
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sin ¢oe jk'/_ sm ¢o
,47 °'_(ao) = (.5.9s)

(,\o)

Also, _dd,¢_.¢,, are the same as those given in (5.46)-(5.47) but are associated with

material parameters to the left of the slab and likewise _T'°dd'¢_¢"_2 are associated with

the material parameters to the right of the slab.

To identify the B expansion coefficients we observe that the surface wave terms

are already of the form appearing in (5.3) and (,5.4) and can be readily rewritten as

%_I ,odd
---Jut

l:i

m=l n=O

Era,odd
_- ltu

r::"(_,_): E B_°_(_o)[Zo_,(-_o_'°'_)
l=l

+'_%"-'.,_o,,-,-m,_=,Z,_--oZa_ (.\_'°" + Ao)" (A_'°'dAo)"] ffJ_'' ([A_'°dd] 2 ,Y) e -''_'," .2.o,,(5.100)

_ta

_,/,O(x,y) = E B:°_'°(ao)[zo,,(-,_o_""")
1=1

.... .] ( ),y e-3"_'_5.101)
m=l n=O

N2,ewn

r;_:_'°(_,y) = E B_''_°°(_o)[Zo,,(,_og,oo_o)
/=1

m=l n=O

with

B_,°'_(,\o)-

s,_'°_'(,_o)-

- sin ¢o ejk_/2 s'm_o

- sin ¢o

_¢J (_o)_{_(_I,o_)_ (_o)
l=l_, od't

e3kr/2 sin ¢o

g'°_+a°gri'(g'°")g(J(ao)[ 0., j.,:.,_o.. (_o)

(,5._03)

(5.104)
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B.,',°_°_(._°t= - sin Oo

, , + ,\_ 1

/ ,)A .\= ,\_. e_ -.,-,

ej kr/2 sin _o

B/e_'e_ (:\o) = _ -- sin Oo ejkr/2sin_o

.\{°_'_+ A°_,_ (.\{._) __°_(._°)L ,., J,__,{..o_;:°(.\o/
(5.106)

It remains to identify the C expansion coefficients and to do this, it is necessary

to employ the transformation j = v_. Doing so in (5.83) permits us to rewrite

d_ f f aS

"even ( )

(.5. i 05 J

F_L°4a(x,y ) -- 9 /_ _ J --3 I_JT_-A2_

Z_"_(_÷_) _-,_I_l_-,,.,dr_
,_ ,/i + _Tin)c.°d_ 0°_ d-f=T_ ':°_ (Ao).__ (ao) 2+ _2+

/ _\ .\"odd -- 1 _Vodd -- 1 -- m rn n

n=O

where the branch of the square root is chosen so that Im(_) > 0 and 6 is a

vanishingly small positive number. The integral may now be split into its positive

and negative portions and then recombined to obtain

where

=.0..(-.°

m=l n=O
(.5.109)
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By invoking (5.61), we can show that

where the term in square brackets is identified as _dd (1 -- 32, Y) as given in (5.46)

for iY[ > r/2. Substituting (5.110) into (5.108) finally yields

F_,odd (z, y) = fo_
if/ Jo

(.5.111)

with the expansion coefficient C_ dd (3) given by

j 32V/_-Ao 2
Cf d_(3) -

v v_=/1 +

In a parallel manner we obtain

d_ff oo (3) Zodd (V_ _2, 3 2 '

(5.113)

K,I ,even o even"diff (CC,_): c_ven(#)Zeven --_2, i kT_1 (1-_2, y) e-Jk'v/]-Z_d;3

(5.114)

n.'_'o(_,_)--Jo°___,o(9)_,_,_(v_-_,_o),_v,_(,__)____if/

(5.115)

where

"_ eL'en

_even- I Neven-l-m m

m=l n=O
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and the spectral expansion coefficients are given by

C$_d(3) =

_odd _ 3 2 2 _ 32 [U_2(1 - 32)I_} 117')

j 32V/] -,\_
c[-" (3) :

jkr/21_/_-_ odd

_2_- ( i_--30m°dd(Ao)Gfd-__2+ ('\o) {[$I;, (i -,3_)]2- 32[N_(i - 32) }

-j ,3_V/_I- A_
c7 "_(3) =

(
Gf_J (x/]"_)G{)dJ (Ao)Gf_d (Ao){[U@, (1- j:)]2- 3: [b{_: (1- 3:)t_} 119)_

From (5.3) and (5.4), the modal terms (5.91) - (5.94), (5.99)-(5.102), (5.111), and

(5.113) - (5.115) provide a field representation which is valid everywhere. Since the

odd and even fields are decoupled, two independent representations are obtained for

each of these fields.

5.3 Determination of the Constants

To determine the constants am,_ and bm,_, we may now enforce the tangential field

continuity conditions

with

F(x:0-,y) = F(x=O+,y); [y[ <r/2 (5.120)

1 1

_,1 (y_OXF(x,Y),,=o- - _,:(y) OxF(x, YL,=o+ ; IYl < ,-/2 (5.121)

tt,,2(y) E_-pol
u,a (y) = (5.12'2)

q,2 (y) H_-pol



123

and the subscripts 1 and 2 denoting quantities attributed to the left and right side

of the slab. Substituting (5.71) - (.5.72) into (5.120) and (5.121) , we obtain

_ _l,oed (z = 0-, y)F); °dd(z = 0-, _) + FL° dd(z = 0 ,_) +. d,ic"

_ _. _':'°ed(z = 0+,y) (5.123)= F];°dd(z = 0+, y) + F 2'°dd(z = 0+, y) +. d;H

_l,odd (Z, U)]0x fF_,°dd(x, y) + F)_°de(_, u) + • duc"
ul (_) L- 90 x=0-

10x ode(x, y) +, ,_. • disc
u2(_) x_-0 +

(5.1':4)

r-_ ].,_11 _'I'l,f

F _,_°" (z = 0-, y) + F _'__" (z = 0- y) + rduc" tz = 0-, y)
- go , - SU_ '

_'_'_'_ (x = 0+,y) (5.12,5)= F_2i'_"_(z=O+,y)+ F;22_'_"(z=O+,y)+.d,H

ut (tJ) - _w z'=O-

y)+ y)+.d,. .=0+ (5.126)_

to be solved for all a_n and b_,_. In particular, for an odd GSTC of O(N_ dd) to

tae left and of O(N_ dd) to the right of the discontinuity, the number of a_,_ to be

determined is equal to

= s '' Nodal + ?Vodd is even (5.127)

"\'_ = 2 / ('vS_'+_%'d)_-I , ,1 , 2s ; _\oaa + Noaa is odd

To determine all a constants, (5.123) and/or (5.124) must then be enforced or sam-

pled at a minimum of N_, points across lul< r/2 and 0 < ¢o < r. Similarly for an

r _"12el'l,even GSTC of O(2_ ) to the left and of O(N_ _) to the right of the discontinuitv,

{

1

(N_ve'_+N_e_'n)(N]"n+N_e_'"-2)" N_Len "F XLe n is even
8

(Nl_en+N_e.en)2-1 . rl
s ' "_,,,,_ + N_._,_ is odd

(5.12s)

and thus. the b constants can be determined by enforcing (5.125) and/or (5.126) at

a minimum of .\'_ points.

Substituting for the fields in (5.123) and (5.124) as given in the previous sect k,n.
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i ,o"

ja2o

,./
ja36'

_,a4o

pJ • ,.,, ...

a:l,.a12, a_3

aga22

,a31

Figure 5 _. indexing scheme for constants.

we obtain the equations

V_.dd (,\o,y) = y'] apQ°_J (m (p) ,n (p) ,Ao, y)
p=l

N_
V odd(,\o,y ) = v-, ,_ode"OxF 2.., aP_CO_F (rn (p) , n (p) , Ao, y)

p=l

(_.13o)

where ap = amtv),_(p) with

(n+m-1)(m+n)
P = +rn

2

re(p) = p-._Int 2 Int

{¢1+8(p-1)+1}n(p) = Int _ -re(p)

(5.131)

41+8(p-1)4-1}; (5.i32)

(5.133)

which are in accordance with the ordering of the a_n constants as the order of the

GSTC is increased (see Figure 5.4). Also,

_7_d(Ao,U)
A_ed (Ao) q2_dd (Ao2,y) - A_dd (Ao) q2_de (Ao2, y)

_VI ,odd

i.V 2 ,odd
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Provided \,odd
- 1.2 are even, the integrals in (5.135) and (5.137) converge (see Table .5.1)

and (5.129) - (5.130) can be solved for the constants a_ by matching (5.129) at _\,,i

points and (.5.130) at _\'_2 points such that ._'Val Jr- /\'a2 > _Va.

To solvefor the bp constants we substitute for the fields in (5.125) and/or (5.i26),

glvmg

with

_.;ve_(,\o,y) = Eb ,'_evon,'_F (m(p),n(p),Ao,y) (5.138)
fi=l

,%

I;'f,gn(ao, Y) = _-_bpQ;;7(m(p),n(p),a_,._) (5.139)
/5=1

and

.l. ,even

/=1

,2,even

+

-/5 _'_(_)_ (-v_o) _:_'_(1- _,_/_
"\oA_'e'_(Ao) e,,e,_ e,,,n

ttl (_/) 1I_1 ()k2o, y) -- /_oA2 (_o) even

,.._ ,,1(v) ,ve_ q'V"_ ] .y

1=1 u_(y) - _ ] 'y

_ (v)

u_(v)

(.5.140)

(5.141)

Q;_'en(,\_,,v) =
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.\,_Jd or -'\,_dd or Junction Branch cut integral Order of branch

.\-_._ .\=_.e_ Field (odd or even) cut integrand

even even

odd

even

odd

even

odd

even

odd

odd

odd

even

even

odd

odd

even

Ez or Hz

E z or Hz

Ez or Hz

Ez or Hz

Hy or Ey

Hy or Ey

Hy or Ey

Hy or Ey

F)_:: (z = 0-, y)

F_:: (z = 0+, y)

1FJ_.,.:(z = 0-, y)

F_,:: (z = 0+, y)

F_:: (_ = o-,y)

0_:: (z = o+,y)

FJ,::(z = o-,y)

F_:s (x = o+,y)

FJ,:: (x = 0-, u)

Fa_::(x = o+,u)

P_,:: (z = o-, y)

Fa_::(z = o+,y)

&::(_ = o-,y)

¢L: (_ = o+,u)

&:: (z = o-,v)

F3]::(_ = 0+,y)

IZ1-3

I_1-3

1_1-2

I_1-_

1/31-_

1/31-1

I_1-1

Table 5.1: Asymptotic behavior of integrand for the functions FdiS! (x = 0 +, y).



12S

.I ,e,Jen
_Jw

-Z
(----I

+12
/=1

+ c? _"(9) -3_+ ao

Q;;?(Ao,y) =

1=1 LL1 (_])

(5.142)

(5.143)

As before bp = bm(p)n(p) with p, re(p), and n(p) given in (5.131)-(5.133). Again,

provided ?V¢v'': 1,2 are even, the integrals in (5.141) and (5.143) converge and (5.138)

(5.139) can be solved for the constants bp by matching (5.138) at .'Vbx points and

(,5.139) at .Vb_ points such that N_ + N_ > Nw Results based on the solution of

(5.129) - (5.130) and (5.138) - (5.139) are considered next.

5.4 Validation of the Solution

In this section we address the validation of the GSTC solution. In particular,

several diffraction patterns are presented for selected material junctions and these

are compared with data obtained by other means. Issues related to the numerical

implementation are also discussed, including those pertaining to the convergence of

the solution and sampling criteria. Finally, some family curves are given for selected
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junction geometries in which the slab thickness is varied.

Figures 5.5, 5.6, and ,5.7 present the echowidth of several recessed slab geometries.

These results were computed with the GSMF-GIBC solution of chapter three and the

more general GIBC solution of chapters four and five. The slab having r = .04, e = 2,

# = 1.2 (see Figure .5.5) may be adequately simulated by a low contrast second order

GIBC. whose solution is distinguished by the presence of a single unknown constant

bl0. The computed value of this constant is given in Tables 5.2 and 5.3. which also

contain the values of the constants pertaining the simulations given in Figures 5.5

to 5.14. It is observed that the constants predicted by the GIBC and GIBC-GSMF

solutions are practically identical, and the corresponding diffraction curves overtay

one another for the PEC stub case as well as the PMC stub case.

The solution constants for the GIBC solution corresponding to the PEC stub were

determined by applying the boundary condition E_ = 0 at the junction. In particular

it was found that a satisfactory solution for bl0 could be obtained by enforcing this

condition at a single point along the junction and for a single angle of incidence.

The nearly-exact values in Table 5.2 result from enforcing the vanishing electric field

at a single junction point for four distinct angles of incidence. We remark that

there is no need for additional sampling points along the junction, since the interior

function is constant with respect to y for a second order low contrast GIBC. A

question may arrise, however, as to why it is desirable to sample at a greater number

of sampling points than the number of unknowns. This is because the GIBC solution

should ideally satisfy the boundary condition over all angles of incidence and at all

points on the junction. Hence by using a sampling grid which spans the junction,

it is possible to obtain a solution which satisfies the boundary conditions across

the junction in an average sense. Once the overdetermined system is generated, a
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solution for the constant(s) may be obtained by standard least-squares techniques.

\\qth regard to the computation of the field quantities at the edge, care must

be exercised in evaluating the branch cut integrals. As seen from Table 5.1, the

convergence of these integrals is not always guaranteed, since the integrand must

have an asymptotic behavior of [A[ -1-6 with 8 > 0. It may then be deduced from

Table 5.1 that one cannot match E_ or Hy at the junction unless the order of all

GIBC/(_;STC for finitely-conducting bodies is even. We remark, however, that al-

though the branch cut integrals for the PEC and PMC cases above always converge

(they behave asymptotically as [A] -3/_ and [A[-_/_ respectively), their evaluation is

not trivial by virtue of the infinite limits of integration. Herewith the infinite interval

is transformed to a finite one. In addition, in case of a pole near the integration path,.

the addition and subtraction process described in [51] is employed to regularize the

integrand.

In Figure 5.6, the slab thickness is increased to .1A and it is now seen that

fourth order conditions are required, resulting in three constants to be determined.

It is found that nearly 12 junction constraints are needed to adequately specify the

constants by enforcing field continuity at three points across the junction for four

angles of incidence. The agreement between the GIBC, GIBC-GSMF, and GSMF-

exact are excellent, and the same is, of course, true for the GIBC and GIBC-GSMF

constants (see Table 5.2). Note that the error in setting the constants to zero in this

case is significant. The final recessed slab geometry has 7- = .4, _ = 5, # = 3 modeled

by second order high contrast GIBCs. Again all solutions agree quite well as do the

values of the constant bl0 as given in Table 5.2.

Figures 5.S to 5.14 present diffraction patterns for material half-planes of increas-

ing thickness and are compared to data from a numerical model. The numerical
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model was constructed by first generating the transient response of a finite length

slab using bandlimited frequency domain data. The contribution from the half-plane

edge was then extracted by time gating the transient response. This numerical model

is valid except near grazing, where the surface wave and ray field excited by the back

edge arrives at the front edge in concert with the incident plane wave. Figures 5.S to

5.11 present the echowidth for low contrast simulations of a half-plane having e = 2,

# = 1.2. Clearly, the agreement between the numerical data and GSTC solution is

excellent. The reader should also note the small values obtained for the constants as

the thickness tends to zero, and this is in agreement with the second order GSTC so-

lutions proposed in [53] and [54]. However, for thicker half-planes the constant plays

a more significant role as evidenced by the erroneous result predicted in Figure 5.11

when the constants are set to zero.

Data based on two high contrast simulations are presented in Figures 5.12 and

5.13 for a material half plane having e = 5 and # = 3. Because of the higher

sampling required, numerical results could only be furnished for a thickness of up

to .05,\ (see Figure 5.13). We observe that the results for the .01)_ thick half-plane

given in Figure 5.12 are in agreement and the same is generally true for the curves in

Figure 5.13 despite the obvious instabilities of the numerical data. In Figure 5.14 a

GSTC simulation is constructed for a two layer half-plane having rl = .005, q = 5,

/_1 = 3 and r2 = .03, e2 = 2, #_ = 1.2. The agreement of the GSTC solution with

the numerical data is quite good except at edge on incidence, and judging by the

abnormal behavior of the numerical data in this region it is conjectured that these

data are in error.

Finally, in Figures 5.16 to ,5.21, family curves are given for various half-planes

and grounded junctions. These are limited in thickness by computational restric-
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tions stemming from the rapid increase in the number of constants as the order is

increased, and additionally from the numerical intensiveness of the routine which

determines the unknown constants. It is, therefore, necessary that the proper order

_.

(the one providing adequate simulation and converged results) of the GSTC be de-

termined beforehand. This can be generally found by leaving out the constants and

computing the diffraction coemcient for increasing order of GSTC until convergence

;': reached, l'he constants can then be determined for the orde_ of the GSTC ren-

dering convergence. This procedure was found quite adequate and was employed to

generate the data in Figures 5.15 to 5.21.
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Figure 5.5: H_ polarization backscatter echo width for a recessed slab with r = .4,

e = 2, # = 1.2 modeled by O(r) second order low contrast GIBC (see
Table 5.2 for constants).
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Figure 5.6: H= polarization backscatter echo width for a recessed slab with r = .1,

= 2, /1 = 1.2 modeled by O(r 3) fourth order low contrast GIBC (see
Table 5.2 for constants).
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Figure 5.7: Hz polarization backscatter echo width for a recessed slab with r = .4,

= 5, # = 3 modeled by O(x -t) second order high contrast GIBC (see

Table 5.2 for constants).
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_" = .005, e = 2, /_ = 1.2 modeled by O(r) low contrast GSTC (see
Table 5.2 for constants).
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Figure 5.9: Hz polarization backscatter echo width for a material half-plane with

r = .05, e = 2, # = 1.2 modeled by O(r) low contrast GSTC (see

Table 5.2 for constants).
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r = .10, e = 2, # = 1.2 modeled by O(r) low contrast GSTC (see

Table 5.2 for constants).



_39

10.0

-10.0

"t:

C•.., -20.0
,<

-30.0

-40.0

..•'

O('r') I.c. (:;STCs
°..,-

O,(T') I.c. GSTCs

Numerical

• ° ,• ,,,.°°° ....

•o°°

°°

°•
°

-50.0

0.0 30.0 60.0 90.0 120.0 150.0 180.0

Angle in degrees

Figure5.11: Hz polarization backscatter echo width for a material half-plane with

r = .20, e = 2, # = 1.2 modeled by O(r) and O(r 3) low contrast GSTC

(see Table 5.2 for constants)•



140

,<

0.0
II

! I

2" order h.c. GSTCs

Numerical /
Q

t I
|

i I
t

30.0 60.0 90.0 120.0 150.0 180.0

Angle in degrees

e -j.ooo ,
",\\\\\\\\\\\\\\\\\\\\\X]
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by O(r) (even symmetry) O(r 2) (odd symmetry) low contrast GSTC.

(see Table 5.3 for constants).



141

10.0

-10.0

-30.0

-40.0 2 "d order h.c. GSTCs

numerical

30.0 60.0 90.0 120.0 150.0 180.0

Angle in degrees

]_T=,051, E=5-j.O001, J._3 _..
k\\\\\\\\\\\\\\\\\\\\_._

Figure 5.13: Hz polarization backscatter echo width for a material half-plane with

r = .05, e = 5, # = 3 modeled by O(x °) (even symmetry) and O(x -1)

(odd symmetry) high contrast GSTC. The free space side is modeled

by O(r) (even symmetry) O(r 2) (odd symmetry) low contrast GSTC.

(see Table 5.3 for constants).
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Figure 5.14: Hz polarization backscatter echo width for a two layer .07A symmetric

material half-plane with rl = .005, el = 5,/_x = 3 and r2 = .03, _ = 2,

# = 1.2. Layer 1 is modeled by O(x °) GSTC, layer 2 and the free space

layer are modeled by O(r) (even symmetry) O(r 2) (odd symmetry) low

contrast GSTC (see Table 5.3 for constants).
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Figure 5.17: H_ polarization backscatter echo width curves for different thickness

grounded slabs with e = 11, # = 7. The number to the left of the

colon denotes the O(r) of the l.c. GIBC for the free space side, and the

number to the right of the colon denotes the O(_ -1) of the b.c. GIBC

for the right hand slab.
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gro,.._ded junctions, with el = 2, #z = 1.2 and e2 = 5, y_ = 3. The

number to the left of the colon denotes the O(r) of the 1.c. GIBC for

the left hand slab and the number to the right of the colon denotes the

O(_ -1) of the h.c. GIBC for the right hand slab.
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Figure 5.19: H, polarization backscatter echo width curves for different thickness

grounded junctions, with el = 5, #1 = :_ and e2 = ll, #2 = 7. The

number to the left of the colon denotes ae O(_ -1) of the h.c. GIBC

for the left hand slab and the number to the right of the colon denotes

the O(_: -1) of the h.c. GIBC for the right hand slab.
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Figure 5.20: H= polarization backscatter echo width curves a grounded junctions,

with el = 2, #1 = 1.2, rl = .025 and e_ = 5, #2 = 3. The first number

to the left of the colon denotes the O(r) of the 1.c. GIBC for the left

hand slab and the first number to the right of the colon denotes the

O(_ -1) of the h.c. GIBC for the right hand slab. The second number

on either side of the colon denotes the O(r) of the 1.c. GIBC for th,"

free space slab needed to give the two sides the same thickness.
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Figure 5.21: H. polarization backscatter echo width curves a grounded junctions,

with el = 5, #1 = 3, rl = .05 and e2 = 11, /_ = 7. The first number

to the left of the colon denotes the O(x -1) of the b.c. GIBC for the

left hand slab and the first number to the right of the colon denotes the

O(x -1) of the b.c. GIBC for the right hand slab. The second number

on either side of the colon denotes the O('r) of the 1.c. GIBC for the

free space slab needed to give the two sides the same thickness.
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•FIGURE 5.5

3IBC(GSMF)-PEC STUB

DI0 = -0.0451+j0.0212

3IBC(GSMF)-PMC STUB

b!0 = 0.6875+j0.3242

FIGURE 5.6

3IBC(GSMF)

bl0 = -0.4578+j0.2593

b20 = -0.0401-j0.0388

3IBC

bl0 - -0.4596+j0.2599

b20 = -0.0400-j0.0388

FIGURE 5.7

31BC(GSMF)

bl0 - -0.0831+j0.0489

FIGURE 5.8

3IBC

bl0 = -.0000+j.0000

FIGURE 5.9

3IBC

bl0 - .0022-j.0009

FIGURE 5.10

SIBC

bl0 - .0008-j.2323

FIGURE 5.11

SIBC 2nd order

bl0 - 0.0152-j0.0166

3!BC 4th order

al0 - -0.0734+j0.0138

a20 = -0.0022+90.0103

bl0 = 0.0350-j0.0368

b20 - -0.0013+j0.0565

b30 = -0.0022-J0.0015

GIBC-PEC STUB

bl0 = -0.0451+j0.0213

GIBC-PMC STUB

bl0 = 0.6875+j0.3242

bll = -0.0408-j0.0111

bll = -0.04i0-j0.0110

GIBC

bl0 = -0.0837+j0.0489

all= 0.0145-j0.0010

bll - 0.0146+j0.0097 b12 - 0.0035-j0021

b21 - -0.0004+j0.0125

Table 5.2: Values of solution constants for curves presented in Figures 5 to 12
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FIGURE 5.1_

al0 = -0.0012-90 .0000

bl0 = 0.00!9-j0.0005

FIGURE 5.13

al0 _ -0.0798-j0.0054

bl0 = 0.0171-j0.0239

b20 = -0.0019+j0.0011

FIGURE5.14

al0 = 0.0003-j0.0000

bl0 = 0.0180-j0.0102

b20 - 0.0002-j0.0001

FIGUKE5.15

t-.005

bl0 - -.0000+j.0000

_=.05

bl0 - .0022-j.0009

t_.10

bl0 - .0008-9.2323

t=.20

bl0 - 0.0152-j0.0166

bll = 0.0090+j0.0002

bll = -0.0060+j0.0002

Table 5.3: Values of solution constants for curves presented in Figures 12 to 15
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5.5 Summary

ILl this chapter a method was proposed and demonstrated for determining the

unknown constants. Specifically, an eigenfunction expansion was presented as a

representation ibr both the interior and exterior fields. The solution of chapter four

was then recast into this form, allowing the unknown constants to be determined

by imposing additional continuity conditions across the junction. Various scattering

patterns were given validating the derived diffraction solution for several material

half-planes and junctions.



CHAPTER VI

SUMMARY

The goal of this dissertation was to develop a plane wave diffraction coefficient

for thick multilayered symmetric slab junctions using simulations based on the gen-

eraIized impedance boundary conditions and generalized sheet transition conditions.

This task was accomplished in four chapters dealing with the derivation of the

GIBC/GSTC, the formulation and formal solution of the plane wave diffraction by

a class of slab junctions, and the subsequent resolution of the unknown constants

which arise in these solutions.

To model multilayered slab junctions, it was first necessary to develop GIBC

and GSTC for multilayered planar slabs, and this was the subject of chapter two.

Recurrence relations were initially developed to relate fields in the adjacent layers

of a multilayered structure, and these were subsequently used to derive infinite or-

der boundary/transition conditions, conveniently expressed in a matrix product with

each matrix corresponding to a layer. Low and high contrast approximations were

then introduced to approximate the individual elements of each layer-matrix leading

to a finite order GIBC/GSTC for the multilayered slab. Since each individual layer

in the slab was characterized by a separate matrix, a low or a high contrast approx-

imation could be employed for each individual matrix as dictated by the refractiv,_
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index of the layer. The accuracy of the derived conditions was evaluated by com-

paring the GIBC/GSTC reflection coefi%ients to their exact counterparts and design

curves were given for various single layer geometries based on the maximum phasor

error of tile approximation.

In chapter three, the plane wave diffraction by a recessed slab in a ground plane

was formulated and solved via the GSMF in conjunction with the dual integral

equation method. The motivation for studying this geometry stemmed from tile

availability of exact data for uniform slabs. It thus served as a reference for evaluating

the accuracy of GIBC in junction simulations. Furthermore, the employed GIBC

simulation resulted in a unique solution, thus bypassing the non-uniqueness issue

associated with GIBC/GSTC simulations of more arbitrary material junctions.

The diffraction by a material discontinuity in a thick dielectric/ferrite slab was

considered in chapter four. The slab was modeled by a distributed current sheet

obeying generalized sheet transition conditions (GSTCs). This representation was

then used to develop dual integral equations in terms of even and odd unknown

spectral functions, which were proportional to the sheet currents. The solution for the

spectra paralleled standard procedure but resulted in expressions involving unknown

constants, revealing the non-uniqueness of the GSTC. It was demonstrated that the

unknown constant(s) could be determined explicitly for the recessed slab discussed in

chapter three by comparison with the results therein and it was also shown that the

obtained solution reduces to simpler known solutions, including that for combinations

of resistive and conductive sheets junctions.

One way of determining the unknown solution constants discussed in chapter four

is to employ field continuity across the junction. This however requires knowledge

of the interior fields and in an effort to determine them, an eigenfunction decomp_,-
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sition wasdevelopedfor arbitrary symmetric multilayered slabsvalid in the exterior

and interior regions. The solution given in chapter four was then recast in this form

permitting the determination of the interior slab field via analytic continuation. The
i

unknown constants were then resolved by applying field continuity accross the junc-

tion. Specifically, a point matching scheme was proposed in which the junction was

sampled across its width for different angles of incidence. The resulting unique solu-

tion was then verified for a number of recessed slab geometries by comparison with

the GSMF solution in chapter three, and also for thin material half-planes who_

scattering patterns were computed numerically. It was observed that the constants

are very small for thin slab structures, but become significant with increasing slab

thickness. Finally, family curves were generated for a number of half-plane and junc-:

tion geometries, and it was found that the convergence of the GIBC/GSTC solutions

can be estimated by leaving out the solution constants.

Clearly, the most challenging part of this work was the determination of the

unknown solution constants. The mere fact that this was possible proved that the

GSTC/GIBC are useful for practical simulations. Certainly, the method used in

chapter five for determining the constants could be employed or paralleled in other

applications. However, as noted therein, the evaluation of the constants for higher

order GSTC simulations becomes numerically intensive and it would, therefore, be

desirable to find alternative means for accomplishing this. For example, instead

of point matching one could explore the orthogonality of the expansion modes or

perhaps use a more efficient evaluation of the integrals.

In this work we explored one application of the GSTC/GIBC simulation, that

of diffraction by multilayered material slab junctions. As can be expected there

are numerous other applications where the GSTC/GIBC can permit analytical solu-



156

tions. Examples include the extension of this work to skew incidence; possible char-

acterization of junctions other than vertical where this solution may be employed

in conjunction with a numerical one; and the diffraction by material junctions on
o

curved surfaces at normal and skew incidences. Also, the characterization of multiple

diffraction effects among material junctions is a straightforward process following the

method already employed in [13].
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APPENDIX A

MULTIPLICATIVE SPLIT FUNCTIONS

In this appendix we consider the splitting of

(A.1)

as a product of two functions, one of which is free of poles, zeros and branch cuts in

the upper half of the A plane and the other having the same properties in the lower

half of the ,\ plane. That is, we seek to write _ (A 2) in the form

(A 2) = G+ (A)__ (A) (A.2)

where the superscript + and - indicate an upper or lower function, respectively.

Noting that

NA

Ha(A 2) = EA'_[1-A']" (A.3)
n=0

NS

Us(A a) = Y_B_[1-A2] _ (A.4)
n=0

with NA = Ns or NA = No + 1, we may rewrite G (A 2) as

Ns

(;) =E s° ° (a
n=O

where ,,V, = Max(2NA,2NB + 1) and S,_ = A,_I_ if n is even and S,_ = B(,_-1)12 if r,

is odd. However, since we seek a multiplicative splitting of (A.5), a more convenioIlt
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form to represent G (A 2) is

(52)= 30II 1+ (A.6t
n=l

v':q_ (_A) L.in which %" denote the zeros of the polynomial z--.l=o St We immediately" now

identify that each of the product terms in (A.6) can be factored as

1 + v/g- 55 _o__M+ (5;3`) M_ (5;3`) (A.r)
7

whore

v/i- _ 5

It_+ (5;1/3,) - M+ (5;;) (A.S)

is the split function characteristic to the impedance half plane having a constant

surface impedance 1/3, [34]. With the branch choosen so that Im(v/'f-A :) < O,

31+ (A' _) is explicitly given by

M+ (5;3`)= M_ (-5;3,)= /
t

31+ (cos a; 1/q) -

In this,

M+ (5; 3`) Im('t) < 0

- Ira(3`) > O,
M+(._;--_1

fi, [,. (3,_/2- _ - o),. (,_/2- _ + o)]'

(A.9)

(A.10)

Im (9) >- 0

5 = COSOe

0 = sin-l(r/) with 0 < Re(0),

(A.11)

and q. (a) is the Maliuzhinets function [22] whose evaluation in algebraic form has

been given in [50]. We remark that in the limit as 3' --+ 0,

M+ (5;3` O) v/i-52_ (A.12)
,/5
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-U+ (X; 7--* _)= 1

The determination of _;±(t) is now rather trivial.

(A.6) we easily obtain

_+

(A.l:3)

By substituting (A.7) into

A): g_(-,\)=_ rI M+ (A;-_.)
n----I

(A.14)
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